Several Concepts to Investigate Strongly Nonnormal Eigenvalue Problems

Eigenvalue analysis plays an important role in understanding physical phenomena. However, if one deals with strongly nonnormal matrices or operators, the eigenvalues alone may not tell the full story. A well-known tool which can be useful to get more insight in the reliability or sensitivity of eigenvalues is $\varepsilon$-pseudospectra. Apart from $\varepsilon$-pseudospectra, we consider other tools which might help to learn more about the eigenvalue problem, viz., condition numbers of the eigenvalues, condition numbers of sets of eigenvectors, and angles between invariant subspaces. All these concepts will be studied and compared for both standard and generalized eigenvalue problems. The tools can be used to analyze large eigenvalue problems. We apply the different concepts to a generalized eigenvalue problem obtained from magnetohydrodynamics. In this problem one is interested in an interior part of the spectrum, called the Alfven spectrum.

[1]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[2]  J. L. V. Dorsselaer,et al.  Pseudospectra for matrix pencils and stability of equilibria , 1997 .

[3]  Lloyd N. Trefethen,et al.  Large-Scale Computation of Pseudospectra Using ARPACK and Eigs , 2001, SIAM J. Sci. Comput..

[4]  N. Higham,et al.  Computing the field of values and pseudospectra using the Lanczos method with continuation , 1996 .

[5]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[6]  M. Gueury Spectral portraits for matrix pencilsVal , 1996 .

[7]  L. Trefethen,et al.  Stability of the method of lines , 1992, Spectra and Pseudospectra.

[8]  V. Frayssé,et al.  A note on the normwise perturbation theory for the regular generalized eigenproblem , 1998 .

[9]  Anne E. Trefethen,et al.  Hydrodynamic Stability Without Eigenvalues , 1993, Science.

[10]  Lloyd N. Trefethen,et al.  Pseudospectra of Linear Operators , 1997, SIAM Rev..

[11]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[12]  Kim-Chuan Toh,et al.  Calculation of Pseudospectra by the Arnoldi Iteration , 1996, SIAM J. Sci. Comput..

[13]  Lloyd N. Trefethen,et al.  Lax-stability of fully discrete spectral methods via stability regions and pseudo-eigenvalues , 1990 .

[14]  Gerard L. G. Sleijpen,et al.  A generalized Jacobi-Davidson iteration method for linear eigenvalue problems , 1998 .

[15]  J. P. Goedbloed,et al.  CASTOR: Normal-Mode Analysis of Resistive MHD Plasmas☆ , 1998 .

[16]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[17]  Lloyd N. Trefethen,et al.  Computation of pseudospectra , 1999, Acta Numerica.

[18]  Lloyd N. Trefethen,et al.  Generalizing Eigenvalue Theorems to Pseudospectra Theorems , 2001, SIAM J. Sci. Comput..

[19]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[20]  G. T. A. Huysmans,et al.  Pseudo-Spectrum of the Resistive Magneto-hydrodynamics Operator: Resolving the Resistive Alfven Paradox , 1994, ArXiv.

[21]  Margreet Nool,et al.  Calculation of resistive magnetohydrodynamic spectra in tokamaks , 1999 .

[22]  Axel Ruhe Rational Krylov Algorithms for Nonsymmetric Eigenvalue Problems , 1994 .

[23]  Valérie Frayssé,et al.  A note on the normwise perturbation theory for the regular generalized eigenproblem , 1998, Numer. Linear Algebra Appl..

[24]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[25]  M. N. Spijker,et al.  Linear stability analysis in the numerical solution of initial value problems , 1993, Acta Numerica.

[26]  A. Sluis Condition numbers and equilibration of matrices , 1969 .

[27]  C. T. Fike,et al.  Norms and exclusion theorems , 1960 .

[28]  Gerard L. G. Sleijpen,et al.  Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..