Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function.

Bordered pits are cavities in the lignified cell walls of xylem conduits (vessels and tracheids) that are essential components in the water-transport system of higher plants. The pit membrane, which lies in the center of each pit, allows water to pass between xylem conduits but limits the spread of embolism and vascular pathogens in the xylem. Averaged across a wide range of species, pits account for > 50% of total xylem hydraulic resistance, indicating that they are an important factor in the overall hydraulic efficiency of plants. The structure of pits varies dramatically across species, with large differences evident in the porosity and thickness of pit membranes. Because greater porosity reduces hydraulic resistance but increases vulnerability to embolism, differences in pit structure are expected to correlate with trade-offs between efficiency and safety of water transport. However, trade-offs in hydraulic function are influenced both by pit-level differences in structure (e.g. average porosity of pit membranes) and by tissue-level changes in conduit allometry (average length, diameter) and the total surface area of pit membranes that connects vessels. In this review we address the impact of variation in pit structure on water transport in plants from the level of individual pits to the whole plant.

[1]  S. Jansen,et al.  The Effect of Preparation Techniques on Sem-Imaging of Pit Membranes , 2008 .

[2]  V. A. Kuz,et al.  Geometrical and physicochemical considerations of the pit membrane in relation to air seeding: the pit membrane as a capillary valve. , 2007, Tree physiology.

[3]  J. Sperry,et al.  Water Transport in Vesselless Angiosperms: Conducting Efficiency and Cavitation Safety , 2007, International Journal of Plant Sciences.

[4]  Lasse Loepfe,et al.  The relevance of xylem network structure for plant hydraulic efficiency and safety. , 2007, Journal of theoretical biology.

[5]  S. Jansen,et al.  Comparative anatomy of intervessel pits in two mangrove species growing along a natural salinity gradient in Gazi bay, Kenya. , 2007, Annals of botany.

[6]  W. Ieperen Ion-mediated changes of xylem hydraulic resistance in planta: fact or fiction? , 2007 .

[7]  E. Schneider,et al.  Origins and nature of vessels in monocotyledons. 9. Sansevieria , 2007 .

[8]  S. Jansen,et al.  Pit membranes in tracheary elements of Rosaceae and related families: new records of tori and pseudotori. , 2007, American journal of botany.

[9]  N. Holbrook,et al.  The role of freezing in setting the latitudinal limits of mangrove forests. , 2007, The New phytologist.

[10]  Barbara Lachenbruch,et al.  Bordered pit structure and function determine spatial patterns of air-seeding thresholds in xylem of Douglas-fir (Pseudotsuga menziesii; Pinaceae) trees. , 2006, American journal of botany.

[11]  J. Sperry,et al.  Size and function in conifer tracheids and angiosperm vessels. , 2006, American journal of botany.

[12]  J. Sperry,et al.  Inter-tracheid pitting and the hydraulic efficiency of conifer wood: the role of tracheid allometry and cavitation protection. , 2006, American journal of botany.

[13]  E. Schneider,et al.  Origins and nature of vessels in monocotyledons: 8. Orchidaceae. , 2006, American journal of botany.

[14]  N. Holbrook,et al.  Direct measurements of intervessel pit membrane hydraulic resistance in two angiosperm tree species. , 2006, American journal of botany.

[15]  J. Sperry,et al.  Scaling of angiosperm xylem structure with safety and efficiency. , 2006, Tree physiology.

[16]  Joshua S. Weitz,et al.  Ontogenetically stable hydraulic design in woody plants , 2006 .

[17]  A. Zanne,et al.  Patterns and consequences of differential vascular sectoriality in 18 temperate tree and shrub species , 2006 .

[18]  T. Dawson,et al.  Hydraulic efficiency and safety of branch xylem increases with height in Sequoia sempervirens (D. Don) crowns. , 2006, Plant, cell & environment.

[19]  J. Sperry,et al.  Torus-Margo Pits Help Conifers Compete with Angiosperms , 2005, Science.

[20]  N. Holbrook,et al.  The spatial pattern of air seeding thresholds in mature sugar maple trees , 2005 .

[21]  Y. Sano Inter- and intraspecific structural variations among intervascular pit membranes, as revealed by field-emission scanning electron microscopy. , 2005, American journal of botany.

[22]  J. Sperry,et al.  Inter‐vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade‐off in xylem transport , 2005 .

[23]  J. Sperry,et al.  Comparative analysis of end wall resistivity in xylem conduits , 2005 .

[24]  A. Jauneau,et al.  Pectin immunolocalization and calcium visualization in differentiating derivatives from poplar cambium , 1997, Protoplasma.

[25]  N. Chaffey,et al.  Cortical microtubule involvement in bordered pit formation in secondary xylem vessel elements ofAesculus hippocastanum L. (Hippocastanaceae): A correlative study using electron microscopy and indirect immunofluorescence microscopy , 1997, Protoplasma.

[26]  T. P. O’brien Further observations on hydrolysis of the cell wall in the xylem , 1970, Protoplasma.

[27]  R. Machado,et al.  Pit membranes in hardwoods—Fine structure and development , 1968, Protoplasma.

[28]  K. Thimann,et al.  Observations on the fine structure of the oat coleoptile , 1967, Protoplasma.

[29]  H. H. Bosshard,et al.  Die submikroskopische Entwicklung der Hoftüpfel , 1956, Planta.

[30]  T. Rials,et al.  Atomic force microscopy of the intervessel pit membrane in the stem of Sapium sebiferum (Euphorbiacea) , 2005 .

[31]  Chris Jacobsen,et al.  Evolution of xylem lignification and hydrogel transport regulation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  R. B. Jackson,et al.  Variation in Xylem Structure and Function in Stems and Roots of Trees to 20 M Depth , 2004 .

[33]  N. Holbrook,et al.  A potential role for xylem-phloem interactions in the hydraulic architecture of trees: effects of phloem girdling on xylem hydraulic conductance. , 2004, Tree physiology.

[34]  S. Jansen,et al.  Intervascular pit membranes with a torus in the wood of Ulmus (Ulmaceae) and related genera. , 2004, The New phytologist.

[35]  S. Jansen,et al.  Changes in pit membrane porosity due to deflection and stretching: the role of vestured pits. , 2004, Journal of experimental botany.

[36]  S. Jansen,et al.  Variation in xylem structure from tropics to tundra: evidence from vestured pits. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Tomoyuki Fujii,et al.  Anatomy of the vessel network within and between tree rings of Fraxinus lanuginosa (Oleaceae). , 2004, American journal of botany.

[38]  J. Sperry,et al.  Analysis of circular bordered pit function I. Angiosperm vessels with homogenous pit membranes. , 2004, American journal of botany.

[39]  J. Sperry,et al.  Analysis of circular bordered pit function II. Gymnosperm tracheids with torus-margo pit membranes. , 2004, American journal of botany.

[40]  J. Sperry,et al.  Root and stem xylem embolism, stomatal conductance, and leaf turgor in Acer grandidentatum populations along a soil moisture gradient , 1996, Oecologia.

[41]  E. Steudle,et al.  Lateral hydraulic conductivity of early metaxylem vessels in Zea mays L. roots , 1993, Planta.

[42]  L. Murmanis,et al.  Lateral flow in beech and birch as revealed by the electron microscope , 1979, Wood Science and Technology.

[43]  J. Bauch,et al.  Variability of the chemical composition of pit membranes in bordered pits of gymnosperms , 1973, Wood Science and Technology.

[44]  W. Liese,et al.  The morphological variability of the bordered pit membranes in gymnosperms , 1972, Wood Science and Technology.

[45]  W. Liese,et al.  On the closure of bordered pits in conifers , 1967, Wood Science and Technology.

[46]  W. Liese,et al.  Experimentelle Untersuchungen über die Feinstruktur der Hoftüpfel bei den Koniferen , 1954, Naturwissenschaften.

[47]  Y. Sano INTERVASCULAR PITTING ACROSS THE ANNUAL RING BOUNDARY IN BETULA PLATYPHYLLA VAR. JAPONICA AND FRAXINUS MANDSHURICA VAR. JAPONICA , 2004 .

[48]  M. Miller,et al.  Torus lignification in hardwoods , 2004 .

[49]  D. Fengel Zum Aufbau des Torus in Hoftüpfelmembranen , 2004, Naturwissenschaften.

[50]  S. Mayr,et al.  Hydraulic efficiency and safety of leader shoots and twigs in Norway spruce growing at the alpine timberline. , 2003, Journal of experimental botany.

[51]  P. Becker,et al.  Incorporation of transfer resistance between tracheary elements into hydraulic resistance models for tapered conduits. , 2003, Tree physiology.

[52]  V. Vallejo,et al.  Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. , 2003, Journal of experimental botany.

[53]  S. Jansen,et al.  Vestured Pits: Do They Promote Safer Water Transport? , 2003, International Journal of Plant Sciences.

[54]  John S. Sperry,et al.  Evolution of Water Transport and Xylem Structure , 2003, International Journal of Plant Sciences.

[55]  R. Funada,et al.  Seasonal and Perennial Changes in the Distribution of Water in the Sapwood of Conifers in a Sub-Frigid Zone1 , 2003, Plant Physiology.

[56]  N. Holbrook,et al.  Vulnerability of Xylem Vessels to Cavitation in Sugar Maple. Scaling from Individual Vessels to Whole Branches1 , 2003, Plant Physiology.

[57]  J. Sperry,et al.  Water transport in plants obeys Murray's law , 2003, Nature.

[58]  B. Choat,et al.  Pit Membrane Porosity and Water Stress-Induced Cavitation in Four Co-Existing Dry Rainforest Tree Species , 2003, Plant Physiology.

[59]  A. R. Ennos,et al.  Modelling the hydrodynamic resistance of bordered pits. , 2002, Journal of Experimental Botany.

[60]  J. Sperry,et al.  Shoot dieback during prolonged drought in Ceanothus (Rhamnaceae) chaparral of California: a possible case of hydraulic failure. , 2002, American journal of botany.

[61]  J. Sperry,et al.  Cavitation fatigue and its reversal in sunflower (Helianthus annuus L.). , 2002, Journal of experimental botany.

[62]  J. Domec,et al.  Age- and position-related changes in hydraulic versus mechanical dysfunction of xylem: inferring the design criteria for Douglas-fir wood structure. , 2002, Tree physiology.

[63]  N. Holbrook,et al.  Hydraulic properties of individual xylem vessels of Fraxinus americana. , 2001, Journal of experimental botany.

[64]  J. Sperry,et al.  Cavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem. , 2001, Plant physiology.

[65]  P. Melcher,et al.  Hydrogel Control of Xylem Hydraulic Resistance in Plants , 2001, Science.

[66]  E. Schneider,et al.  Vessels in ferns: structural, ecological, and evolutionary significance. , 2001, American journal of botany.

[67]  Prof. Dr. Sherwin Carlquist,et al.  Comparative Wood Anatomy , 2001, Springer Series in Wood Science.

[68]  J. Sperry,et al.  Tansley Review No. 119 , 2000 .

[69]  H. Fukuda,et al.  Autolysis during in vitro tracheary element differentiation: formation and location of the perforation. , 2000, Plant & cell physiology.

[70]  M. Donoghue,et al.  Structure and Function of Tracheary Elements in Amborella trichopoda , 2000, International Journal of Plant Sciences.

[71]  N. Holbrook,et al.  Bordered pit structure and vessel wall surface properties. Implications for embolism repair. , 2000, Plant physiology.

[72]  M. Mccully,et al.  Architecture of Branch-root Junctions in Maize: Structure of the Connecting Xylem and the Porosity of Pit Membranes , 2000 .

[73]  U. Meeteren,et al.  Fluid ionic composition influences hydraulic conductance of xylem conduits , 2000 .

[74]  S. Patiño,et al.  Branch sacrifice: cavitation-associated drought adaptation of riparian cottonwoods , 2000, Trees.

[75]  G. Daniel,et al.  THE DISTRIBUTION OF ACIDIC AND ESTERIFIED PECTIN IN CAMBIUM, DEVELOPING XYLEM AND MATURE XYLEM OF PINUS SYLVESTRIS , 2000 .

[76]  J. Thorsch VESSELS IN ZINGIBERACEAE: A LIGHT, SCANNING, AND TRANSMISSION MICROSCOPE STUDY , 2000 .

[77]  J. Sperry,et al.  Transport constraints on water use by the Great Basin shrub, Artemisia tridentata , 1999 .

[78]  James H. Brown,et al.  A general model for the structure and allometry of plant vascular systems , 1999, Nature.

[79]  Catherine Loudon,et al.  Application of the Hagen—Poiseuille Equation to Fluid Feeding through Short Tubes , 1999 .

[80]  Y. Kawakami,et al.  Variation in the Structure of Intertracueary Pit Membranes in Abies Sacualinensis, as Observed by Field-Emission Scanning Electron Microscopy , 1999 .

[81]  B. Bond,et al.  Shoot and root vulnerability to xylem cavitation in four populations of Douglas-fir seedlings. , 1999, Tree physiology.

[82]  R. Nakada,et al.  Time course of the secondary deposition of incrusting materials on bordered pit membranes in cryptomeria japonica , 1998 .

[83]  S. Jansen,et al.  Vestures in Woody Plants: A Review , 1998 .

[84]  Maurizio Mencuccini,et al.  Vulnerability to cavitation in populations of two desert species, Hymenoclea salsola and Ambrosia dumosa, from different climatic regions , 1997 .

[85]  M. Tyree,et al.  Whole-plant hydraulic resistance and vulnerability segmentation in Acer saccharinum. , 1997, Tree physiology.

[86]  Hervé Cochard,et al.  Developmental control of xylem hydraulic resistances and vulnerability to embolism in Fraxinus excelsior L.: impacts on water relations , 1997 .

[87]  U. Hacke,et al.  Drought-Induced Xylem Dysfunction in Petioles, Branches, and Roots of Populus balsamifera L. and Alnus glutinosa (L.) Gaertn , 1996, Plant physiology.

[88]  R. Dute,et al.  Intervascular Pit Membrane Structure in Daphne and Wikstroemia - Systematic Implications , 1996 .

[89]  William T. Pockman,et al.  Sustained and significant negative water pressure in xylem , 1995, Nature.

[90]  C. Field,et al.  Negative Xylem Pressures in Plants: A Test of the Balancing Pressure Technique , 1995, Science.

[91]  Emery R. Boose,et al.  Estimating volume flow rates through xylem conduits , 1995 .

[92]  M. Gullo,et al.  Relations between vulnerability to xylem embolism and xylem conduit dimensions in young trees of Quercus cerris , 1995 .

[93]  J. A. Jarbeau,et al.  The mechanism of water‐stress‐induced embolism in two species of chaparral shrubs , 1995 .

[94]  John S. Sperry,et al.  Intra‐ and inter‐plant variation in xylem cavitation in Betula occidentalis , 1994 .

[95]  F. Ewers,et al.  Conduit diameter and drought‐induced embolism in Salvia mellifera Greene (Labiatae) , 1994 .

[96]  S. Davis,et al.  Biophysical Perspectives of Xylem Evolution: is there a Tradeoff of Hydraulic Efficiency for Vulnerability to Dysfunction? , 1994 .

[97]  Hervé Cochard,et al.  Drought‐induced leaf shedding in walnut: evidence for vulnerability segmentation , 1993 .

[98]  J. Sperry,et al.  Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. , 1992, Plant physiology.

[99]  M. Tyree,et al.  Use of positive pressures to establish vulnerability curves : further support for the air-seeding hypothesis and implications for pressure-volume analysis. , 1992, Plant physiology.

[100]  J. Grace,et al.  The Limits to Xylem Embolism Recovery in Pinus sylvestris L. , 1992 .

[101]  S. Carlquist PIT MEMBRANE REMNANTS IN PERFORATION PLATES OF PRIMITIVE DICOTYLEDONS AND THEIR SIGNIFICANCE , 1992 .

[102]  F. Ewers,et al.  The hydraulic architecture of trees and other woody plants , 1991 .

[103]  J. Sperry,et al.  Pit Membrane Degradation and Air-Embolism Formation in Ageing Xylem Vessels of Populus tremuloides Michx , 1991 .

[104]  M. Gullo,et al.  Three different methods for measuring xylem cavitation and embolism : a comparison , 1991 .

[105]  Melvin T. Tyree,et al.  Water‐stress‐induced xylem embolism in three species of conifers , 1990 .

[106]  R. Dute,et al.  Torus Structure and Development in the Woods of Ulmus Alata Michx., Celtis Laevigata Willd., and Celtis Occidentalis L. , 1990 .

[107]  P. Nobel,et al.  Water flow in vessels with simple or compound perforation plates , 1989 .

[108]  A. Tyree,et al.  Vulnerability of Xylem to Cavitation and Embolism , 1989 .

[109]  J. Sperry,et al.  Mechanism of water stress-induced xylem embolism. , 1988, Plant physiology.

[110]  P. Schulte,et al.  Hydraulic conductance and tracheid anatomy in six species of extant seed plants , 1988 .

[111]  P. Nobel,et al.  Biophysical Model of Xylem Conductance in Tracheids of the Fern Pteris vittata , 1986 .

[112]  P. Nobel,et al.  Hydraulic Conductance and Xylem Structure in Tracheid-Bearing Plants , 1985 .

[113]  N. V. Van Alfen,et al.  Role of pit membranes in macromolecule-induced wilt of plants. , 1983, Plant physiology.

[114]  M. Zimmermann Xylem Structure and the Ascent of Sap , 1983, Springer Series in Wood Science.

[115]  E. Wheeler Intervascular Pit Membranes in Ulmus and Celtis Native to the United States , 1983 .

[116]  A. Catesson A Cytochemical Investigation of the Lateral Walls of Dianthus Vessels. Differentiation and Pit-Membrane Formation , 1983 .

[117]  B. Meylan,et al.  Cell wall hydrolysis in the tracheary elements of the secondary xylem , 1982 .

[118]  J. Barnett Xylem Cell Development , 1981 .

[119]  S. Vogel Life in Moving Fluids: The Physical Biology of Flow , 1981 .

[120]  Rudolf Schmid,et al.  The study of plant structure: Principles and selected methods , 1981 .

[121]  L. Murmanis Breakdown of End Walls in Differentiating Vessels of Secondary Xylem in Quercus rubra L. , 1978 .

[122]  P. Baas Some functional and adaptive aspects of vessel member morphology , 1976 .

[123]  J. Petty The aspiration of bordered pits in conifer wood , 1972, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[124]  P. D. Burggraaf SOME OBSERVATIONS ON THE COURSE OF THE VESSELS IN THE WOOD OF FRAXINUS EXCELSIOR L. , 1972 .

[125]  K. Kringstad,et al.  The Role of Hydrogen Bonding in Pit Aspiration , 1971 .

[126]  P. Tomlinson,et al.  Analysis of Complex Vascular Systems in Plants: Optical Shuttle Method , 1966, Science.

[127]  P. F. Scholander,et al.  Sap Pressure in Vascular Plants , 1965, Science.

[128]  G. Tsoumis STRUCTURAL DEFORMITIES IN AN EPIDEMIC TUMOR OF WHITE SPRUCE, PICEA GLAUCA , 1965 .

[129]  I. Sachs Torus of the Bordered-pit Membrane in Conifers , 1963, Nature.

[130]  S. Carlquist Comparative Wood Anatomy: Systematic, Ecological, and Evolutionary Aspects of Dicotyledon Wood , 1990 .

[131]  R. White Vessels in Roots of Marsilea , 1961, Science.

[132]  The fine structure of the pits of Eucalyptus regnans (F. Muell.) and their relation to the movement of liquids into the wood. , 1960 .

[133]  E. Münch Durchlässigkeit der Siebröhren für Druckströmungen. , 1943 .

[134]  A. J. Ewart The Ascent of Water in Trees. , 2011, Proceedings of the Royal Society of London.