Distrubance Tracking and Blade Load Control of Wind Turbines in Variable-Speed Operation: Preprint

A composite state-space controller was developed for a multi-objective problem in the variable-speed operation of wind turbines. Disturbance Tracking Control theory was applied to the design of a torque controller to optimize energy capture under the influence of persistent wind disturbances. A limitation in the theory for common multi-state models is described, which led to the design of a complementary pitch controller. The goal of the independent blade pitch design was to minimize blade root fatigue loads. Simulation results indicate an 11% reduction in fatigue damage using the proposed controllers, compared to a conventional torque-only design. Meanwhile, energy capture is almost identical, partly because of nonlinear effects.