The Network Framework of Molecular Evolution

[1]  Eugene V Koonin,et al.  No simple dependence between protein evolution rate and the number of protein-protein interactions: only the most prolific interactors tend to evolve slowly , 2003, BMC Evolutionary Biology.

[2]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[3]  Giovanni Marco Dall'Olio,et al.  Molecular evolution and network-level analysis of the N-glycosylation metabolic pathway across primates. , 2011, Molecular biology and evolution.

[4]  M. Aguadé,et al.  Network-level molecular evolutionary analysis of the insulin/TOR signal transduction pathway across 12 Drosophila genomes. , 2008, Genome research.

[5]  A. E. Hirsh,et al.  Functional genomic analysis of the rates of protein evolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[6]  A. Barabasi,et al.  Network medicine : a network-based approach to human disease , 2010 .

[7]  Eduardo P C Rocha,et al.  An analysis of determinants of amino acids substitution rates in bacterial proteins. , 2004, Molecular biology and evolution.

[8]  Sergei L. Kosakovsky Pond,et al.  HyPhy: hypothesis testing using phylogenies , 2005, Bioinform..

[9]  Mark D. Rausher,et al.  Variation in Constraint Versus Positive Selection as an Explanation for Evolutionary Rate Variation Among Anthocyanin Genes , 2008, Journal of Molecular Evolution.

[10]  Sara Light,et al.  Network analysis of metabolic enzyme evolution in Escherichia coli , 2004, BMC Bioinformatics.

[11]  L. Matzkin,et al.  Adaptive evolution of metabolic pathways in Drosophila. , 2007, Molecular biology and evolution.

[12]  An-Ping Zeng,et al.  Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach , 2004, BMC Bioinformatics.

[13]  L. Rieseberg,et al.  The correlation of evolutionary rate with pathway position in plant terpenoid biosynthesis. , 2009, Molecular biology and evolution.

[14]  P. Luisi,et al.  Distribution of events of positive selection and population differentiation in a metabolic pathway: the case of asparagine N-glycosylation , 2012, BMC Evolutionary Biology.

[15]  C. Wilke,et al.  A single determinant dominates the rate of yeast protein evolution. , 2006, Molecular biology and evolution.

[16]  A. E. Hirsh,et al.  Evolutionary Rate in the Protein Interaction Network , 2002, Science.

[17]  M. Gerstein,et al.  Structure and evolution of transcriptional regulatory networks. , 2004, Current opinion in structural biology.

[18]  D. Fell,et al.  The small world inside large metabolic networks , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[19]  C. Pál,et al.  An integrated view of protein evolution , 2006, Nature Reviews Genetics.

[20]  Z N Oltvai,et al.  Evolutionary conservation of motif constituents in the yeast protein interaction network , 2003, Nature Genetics.

[21]  Greg Gibson,et al.  Contrasting selection pressures on components of the Ras‐mediated signal transduction pathway in Drosophila , 2003, Molecular ecology.

[22]  Stephen Oliver,et al.  Genome-wide analysis of the context-dependence of regulatory networks , 2005, Genome Biology.

[23]  N. Goldman,et al.  Codon-substitution models for heterogeneous selection pressure at amino acid sites. , 2000, Genetics.

[24]  Jan O. Korbel,et al.  Positive selection at the protein network periphery: Evaluation in terms of structural constraints and cellular context , 2007, Proceedings of the National Academy of Sciences.

[25]  Giovanni Marco Dall'Olio,et al.  The annotation of the asparagine N-linked glycosylation pathway in the Reactome database. , 2011, Glycobiology.

[26]  Adam Eyre-Walker,et al.  The genomic rate of adaptive evolution. , 2006, Trends in ecology & evolution.

[27]  M. Aguadé,et al.  Comparative Genomics of the Vertebrate Insulin/TOR Signal Transduction Pathway: A Network-Level Analysis of Selective Pressures , 2010, Genome biology and evolution.

[28]  Matthew W. Hahn,et al.  Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. , 2005, Molecular biology and evolution.

[29]  B. Palsson,et al.  Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. , 2003, Genome research.

[30]  Z. Yang,et al.  Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. , 1998, Molecular biology and evolution.

[31]  An-Ping Zeng,et al.  The Connectivity Structure, Giant Strong Component and Centrality of Metabolic Networks , 2003, Bioinform..

[32]  D. M. Krylov,et al.  Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. , 2003, Genome research.

[33]  R. Nielsen,et al.  Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. , 2005, Molecular biology and evolution.

[34]  Frances H Arnold,et al.  Structural determinants of the rate of protein evolution in yeast. , 2006, Molecular biology and evolution.

[35]  An-Ping Zeng,et al.  Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms , 2003, Bioinform..

[36]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[37]  S. Wuchty Evolution and topology in the yeast protein interaction network. , 2004, Genome research.

[38]  Ricard V Solé,et al.  Topology, tinkering and evolution of the human transcription factor network , 2005, The FEBS journal.

[39]  D E Koshland,et al.  The branch point effect. Ultrasensitivity and subsensitivity to metabolic control. , 1984, The Journal of biological chemistry.

[40]  D. Vitkup,et al.  Influence of metabolic network structure and function on enzyme evolution , 2006, Genome Biology.

[41]  Sergei L. Kosakovsky Pond,et al.  CodonTest: Modeling Amino Acid Substitution Preferences in Coding Sequences , 2010, PLoS Comput. Biol..

[42]  K. Livingstone,et al.  Patterns of variation in the evolution of carotenoid biosynthetic pathway enzymes of higher plants. , 2009, The Journal of heredity.

[43]  Matthew W. Hahn,et al.  Molecular Evolution in Large Genetic Networks: Does Connectivity Equal Constraint? , 2004, Journal of Molecular Evolution.

[44]  A. Clark,et al.  Evolutionary constraint and adaptation in the metabolic network of Drosophila. , 2008, Molecular biology and evolution.

[45]  M. Rausher,et al.  Evolution of flux control in the glucosinolate pathway in Arabidopsis thaliana. , 2013, Molecular biology and evolution.

[46]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[47]  S. Ge,et al.  Evolutionary rate patterns of the Gibberellin pathway genes , 2009, BMC Evolutionary Biology.

[48]  R. E. Miller,et al.  Patterns of evolutionary rate variation among genes of the anthocyanin biosynthetic pathway. , 1999, Molecular biology and evolution.

[49]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[50]  Markus J. Herrgård,et al.  Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. , 2004, Genome research.

[51]  E. Koonin,et al.  Conservation and coevolution in the scale-free human gene coexpression network. , 2004, Molecular biology and evolution.

[52]  John Hallam,et al.  Artificial intelligence and robotics in high throughput post-genomics. , 2005, Drug discovery today.

[53]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[54]  Andreas Wagner,et al.  Molecular evolution in the yeast transcriptional regulation network. , 2004, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[55]  Hunter B. Fraser,et al.  Modularity and evolutionary constraint on proteins , 2005, Nature Genetics.

[56]  M. Gerstein,et al.  Genomic analysis of the hierarchical structure of regulatory networks , 2006, Proceedings of the National Academy of Sciences.

[57]  P. Luisi,et al.  Network-level and population genetics analysis of the insulin/TOR signal transduction pathway across human populations. , 2012, Molecular biology and evolution.

[58]  C. Adami,et al.  Apparent dependence of protein evolutionary rate on number of interactions is linked to biases in protein–protein interactions data sets , 2003, BMC Evolutionary Biology.

[59]  J. Thornton,et al.  Diversity of protein–protein interactions , 2003, The EMBO journal.

[60]  M. Rausher,et al.  Evolutionary rate variation in anthocyanin pathway genes. , 2003, Molecular biology and evolution.

[61]  R. Nielsen Molecular signatures of natural selection. , 2005, Annual review of genetics.

[62]  Lindsey Leach,et al.  Impacts of yeast metabolic network structure on enzyme evolution , 2007, Genome Biology.

[63]  Jianzhi Zhang,et al.  Why Do Hubs Tend to Be Essential in Protein Networks? , 2006, PLoS genetics.

[64]  P. Bork,et al.  Evolution of biomolecular networks — lessons from metabolic and protein interactions , 2009, Nature Reviews Molecular Cell Biology.

[65]  Patrick C Phillips,et al.  Evolutionary rates and centrality in the yeast gene regulatory network , 2009, Genome Biology.

[66]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[67]  M. Gerstein,et al.  Getting connected: analysis and principles of biological networks. , 2007, Genes & development.

[68]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[69]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.