On Measures of Entropy and Information
暂无分享,去创建一个
[1] R. Clausius,et al. Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie , 1865 .
[2] K. Pearson. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is Such that it Can be Reasonably Supposed to have Arisen from Random Sampling , 1900 .
[3] E. Hellinger,et al. Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen. , 1909 .
[4] L. M. M.-T.. Theory of Probability , 1929, Nature.
[5] A. Bhattacharyya. On a measure of divergence between two statistical populations defined by their probability distributions , 1943 .
[6] S. Kakutani. On Equivalence of Infinite Product Measures , 1948 .
[7] H. Chernoff. A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .
[8] William J. McGill. Multivariate information transmission , 1954, Trans. IRE Prof. Group Inf. Theory.
[9] Irving John Good,et al. Some Terminology and Notation in Information Theory , 1956 .
[10] Michael Satosi Watanabe,et al. Information Theoretical Analysis of Multivariate Correlation , 1960, IBM J. Res. Dev..
[11] D. Kerridge. Inaccuracy and Inference , 1961 .
[12] Mill Johannes G.A. Van,et al. Transmission Of Information , 1961 .
[13] G. A. Barnard,et al. Transmission of Information: A Statistical Theory of Communications. , 1961 .
[14] A. Rényi. On Measures of Entropy and Information , 1961 .
[15] T. Morimoto. Markov Processes and the H -Theorem , 1963 .
[16] S. M. Ali,et al. A General Class of Coefficients of Divergence of One Distribution from Another , 1966 .
[17] Jan Havrda,et al. Quantification method of classification processes. Concept of structural a-entropy , 1967, Kybernetika.
[18] D. A. Bell,et al. Information Theory and Reliable Communication , 1969 .
[19] Zoltán Daróczy,et al. Generalized Information Functions , 1970, Inf. Control..
[20] L. Boltzmann. Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen , 1970 .
[21] P. Arabie,et al. Multidimensional scaling of measures of distance between partitions , 1973 .
[22] Te Sun Han. Nonnegative Entropy Measures of Multivariate Symmetric Correlations , 1978, Inf. Control..
[23] Te Sun Han,et al. Multiple Mutual Informations and Multiple Interactions in Frequency Data , 1980, Inf. Control..
[24] I. Vincze. On the Concept and Measure of Information Contained in an Observation , 1981 .
[25] L. L. Cam,et al. Asymptotic Methods In Statistical Decision Theory , 1986 .
[26] C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics , 1988 .
[27] J. E. Glynn,et al. Numerical Recipes: The Art of Scientific Computing , 1989 .
[28] Kenneth Ward Church,et al. Word Association Norms, Mutual Information, and Lexicography , 1989, ACL.
[29] J. Crutchfield. Information and Its Metric , 1990 .
[30] Gilles Brassard,et al. Experimental Quantum Cryptography , 1990, EUROCRYPT.
[31] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[32] Jianhua Lin,et al. Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.
[33] Raymond W. Yeung,et al. A new outlook of Shannon's information measures , 1991, IEEE Trans. Inf. Theory.
[34] G. Parmigiani. Large Deviation Techniques in Decision, Simulation and Estimation , 1992 .
[35] R. Jozsa. Fidelity for Mixed Quantum States , 1994 .
[36] Huaiyu Zhu. On Information and Sufficiency , 1997 .
[37] C. Tsallis,et al. Information gain within nonextensive thermostatistics , 1998 .
[38] G. Maugin. THERMOSTATICS AND THERMODYNAMICS , 1999 .
[39] Flemming Topsøe,et al. Some inequalities for information divergence and related measures of discrimination , 2000, IEEE Trans. Inf. Theory.
[40] Don H. Johnson,et al. Symmetrizing the Kullback-Leibler Distance , 2001 .
[41] Anand G. Dabak,et al. Relations between Kullback-Leibler distance and Fisher information , 2002 .
[42] A. J. Bell. THE CO-INFORMATION LATTICE , 2003 .
[43] Dominik Endres,et al. A new metric for probability distributions , 2003, IEEE Transactions on Information Theory.
[44] Michael J. Berry,et al. Network information and connected correlations. , 2003, Physical review letters.
[45] Yaneer Bar-Yam,et al. Multiscale Complexity/Entropy , 2004, Adv. Complex Syst..
[46] I. J. Taneja. REFINEMENT INEQUALITIES AMONG SYMMETRIC DIVERGENCE MEASURES , 2005 .
[47] Robert H. Shumway,et al. Discrimination and Clustering for Multivariate Time Series , 1998 .
[48] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[49] Sung-Hyuk Cha. Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions , 2007 .
[50] T. Aaron Gulliver,et al. Confliction of the Convexity and Metric Properties in f-Divergences , 2007, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..
[51] Daniel Pérez Palomar,et al. Lautum Information , 2008, IEEE Transactions on Information Theory.
[52] Tsachy Weissman,et al. The Information Lost in Erasures , 2008, IEEE Transactions on Information Theory.
[53] Mark D. Plumbley,et al. A measure of statistical complexity based on predictive information , 2010, ArXiv.
[54] Alexander N. Gorban,et al. Entropy: The Markov Ordering Approach , 2010, Entropy.
[55] Mark D. Reid,et al. Information, Divergence and Risk for Binary Experiments , 2009, J. Mach. Learn. Res..
[56] James P. Crutchfield,et al. Anatomy of a Bit: Information in a Time Series Observation , 2011, Chaos.
[57] Frank Nielsen,et al. A closed-form expression for the Sharma–Mittal entropy of exponential families , 2011, ArXiv.
[58] Massimiliano Esposito,et al. Mutual entropy production in bipartite systems , 2013, 1307.4728.