The Robo-AO KOI survey: laser adaptive optics imaging of every Kepler exoplanet candidate

The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficiency provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15" to 4.0" separation with contrasts up to 6 magnitudes) that dilute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present 3313 high resolution observations of Kepler planetary hosts from 2012-2015, discovering 479 nearby stars. We measure an overall nearby star probability rate of 14.5±0.8%. With this large data set, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host, providing insight into the formation and evolution of planetary systems in our galaxy. Several KOIs of particular interest will be discussed, including possible quadruple star systems hosting planets and updated properties for possible rocky planets orbiting with in their star's habitable zone.

[1]  Octavi Fors,et al.  Evryscope Science: Exploring the Potential of All-Sky Gigapixel-Scale Telescopes , 2015, 1501.03162.

[2]  Jessie L. Dotson,et al.  KEPLER SCIENCE OPERATIONS , 2010, 1001.0437.

[3]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[4]  Ji Wang,et al.  INFLUENCE OF STELLAR MULTIPLICITY ON PLANET FORMATION. III. ADAPTIVE OPTICS IMAGING OF KEPLER STARS WITH GAS GIANT PLANETS , 2015, 1505.05363.

[5]  P. Giommi,et al.  The PLATO 2.0 mission , 2013, 1310.0696.

[6]  F. Fressin,et al.  CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BY KEPLER. II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA , 2011, 1102.0541.

[7]  Steve B. Howell,et al.  OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. IV. OBSERVATIONS OF KEPLER, CoRoT, AND HIPPARCOS STARS FROM THE GEMINI NORTH TELESCOPE , 2012 .

[8]  Pravin Chordia,et al.  HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS , 2014, 1407.8179.

[9]  S. Seager Exoplanet Habitability , 2013, Science.

[10]  W. Farr,et al.  ON THE FORMATION OF HOT JUPITERS IN STELLAR BINARIES , 2012, 1206.3529.

[11]  Peter Tenenbaum,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER IV: PLANET SAMPLE FROM Q1–Q8 (22 MONTHS) , 2013, 1312.5358.

[12]  C. Marois,et al.  A NEW ALGORITHM FOR POINT SPREAD FUNCTION SUBTRACTION IN HIGH-CONTRAST IMAGING: A DEMONSTRATION WITH ANGULAR DIFFERENTIAL IMAGING , 2007 .

[13]  F. Fressin,et al.  CHARACTERISTICS OF KEPLER PLANETARY CANDIDATES BASED ON THE FIRST DATA SET , 2010, 1006.2799.

[14]  D. Ciardi,et al.  INFLUENCE OF STELLAR MULTIPLICITY ON PLANET FORMATION. II. PLANETS ARE LESS COMMON IN MULTIPLE-STAR SYSTEMS WITH SEPARATIONS SMALLER THAN 1500 AU , 2014, 1407.3344.

[15]  X. Delfosse,et al.  Habitable planets around the star Gliese 581 , 2007, 0710.5294.

[16]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite , 2014, 1406.0151.

[17]  Nigel Bannister,et al.  Next Generation Transit Survey (NGTS) , 2013, Proceedings of the International Astronomical Union.

[18]  K. Stanek,et al.  Wide‐Field Millimagnitude Photometry with the HAT: A Tool for Extrasolar Planet Detection , 2004, astro-ph/0401219.

[19]  Shane Jacobson,et al.  Second generation Robo-AO instruments and systems , 2014, Astronomical Telescopes and Instrumentation.

[20]  L. Rogers MOST 1.6 EARTH-RADIUS PLANETS ARE NOT ROCKY , 2014, 1407.4457.

[21]  Eric B. Bechter,et al.  FRIENDS OF HOT JUPITERS. II. NO CORRESPONDENCE BETWEEN HOT-JUPITER SPIN–ORBIT MISALIGNMENT AND THE INCIDENCE OF DIRECTLY IMAGED STELLAR COMPANIONS , 2014, 1501.00013.

[22]  Justin R. Crepp,et al.  VALIDATION OF 12 SMALL KEPLER TRANSITING PLANETS IN THE HABITABLE ZONE , 2015, 1501.01101.

[23]  Khadeejah A. Zamudio,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. VII. THE FIRST FULLY UNIFORM CATALOG BASED ON THE ENTIRE 48-MONTH DATA SET (Q1–Q17 DR24) , 2015, 1512.06149.

[24]  A. Dupree,et al.  ADAPTIVE OPTICS IMAGES. III. 87 KEPLER OBJECTS OF INTEREST , 2014, 1407.1848.

[25]  D. Ciardi,et al.  SPECKLE CAMERA OBSERVATIONS FOR THE NASA KEPLER MISSION FOLLOW-UP PROGRAM , 2011 .

[26]  S. Dong,et al.  Long-term cycling of Kozai-Lidov cycles: extreme eccentricities and inclinations excited by a distant eccentric perturber. , 2011, Physical review letters.

[27]  Keivan Stassun,et al.  The KELT-South Telescope , 2012, 1202.1826.

[28]  A. Dupree,et al.  ADAPTIVE OPTICS IMAGES. II. 12 KEPLER OBJECTS OF INTEREST AND 15 CONFIRMED TRANSITING PLANETS , 2013, 1305.6548.

[29]  M. Mayor,et al.  Multiplicity among solar-type stars in the solar neighbourhood. II - Distribution of the orbital elements in an unbiased sample. , 1991 .

[30]  Christoph Baranec,et al.  PROBABILITY OF THE PHYSICAL ASSOCIATION OF 104 BLENDED COMPANIONS TO KEPLER OBJECTS OF INTEREST USING VISIBLE AND NEAR-INFRARED ADAPTIVE OPTICS PHOTOMETRY , 2016, 1609.09512.

[31]  R. Nelson,et al.  On the dynamics and collisional growth of planetesimals in misaligned binary systems , 2011, 1104.1460.

[32]  John C. Geary,et al.  KEPLER-4b: A HOT NEPTUNE-LIKE PLANET OF A G0 STAR NEAR MAIN-SEQUENCE TURNOFF , 2010, 1001.0604.

[33]  Christoph Baranec,et al.  KNOW THE STAR, KNOW THE PLANET. III. DISCOVERY OF LATE-TYPE COMPANIONS TO TWO EXOPLANET HOST STARS , 2015, 1503.01211.

[34]  D. Ciardi,et al.  INFLUENCE OF STELLAR MULTIPLICITY ON PLANET FORMATION. IV. ADAPTIVE OPTICS IMAGING OF KEPLER STARS WITH MULTIPLE TRANSITING PLANET CANDIDATES , 2015, 1510.01964.

[35]  M. Ireland,et al.  THE IMPACT OF STELLAR MULTIPLICITY ON PLANETARY SYSTEMS. I. THE RUINOUS INFLUENCE OF CLOSE BINARY COMPANIONS , 2016, 1604.05744.

[36]  M. R. Haas,et al.  MASSES, RADII, AND ORBITS OF SMALL KEPLER PLANETS: THE TRANSITION FROM GASEOUS TO ROCKY PLANETS , 2014, 1401.4195.

[37]  F. Mullally,et al.  The K2 Mission: Characterization and Early Results , 2014, 1402.5163.

[38]  J. E. Stys,et al.  The XO Project: Searching for Transiting Extrasolar Planet Candidates , 2005, astro-ph/0505560.

[39]  John Asher Johnson,et al.  ROBOTIC LASER ADAPTIVE OPTICS IMAGING OF 715 KEPLER EXOPLANET CANDIDATES USING ROBO-AO , 2013, 1312.4958.

[40]  Jena,et al.  Extrasolar planets in stellar multiple systems , 2012, 1204.4833.

[41]  David Charbonneau,et al.  Design Considerations for a Ground-Based Transit Search for Habitable Planets Orbiting M Dwarfs , 2007, 0709.2879.

[42]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite (TESS) , 2014, Astronomical Telescopes and Instrumentation.

[43]  Khadeejah A. Zamudio,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. V. PLANET SAMPLE FROM Q1–Q12 (36 MONTHS) , 2015, 1501.07286.

[44]  E. Agol,et al.  VALIDATION OF KEPLER'S MULTIPLE PLANET CANDIDATES. III. LIGHT CURVE ANALYSIS AND ANNOUNCEMENT OF HUNDREDS OF NEW MULTI-PLANET SYSTEMS , 2014, 1402.6534.

[45]  K. Batygin A primordial origin for misalignments between stellar spin axes and planetary orbits , 2012, Nature.

[46]  Russel J. White,et al.  A SURVEY OF STELLAR FAMILIES: MULTIPLICITY OF SOLAR-TYPE STARS , 2009, 1007.0414.

[47]  J. Lillo-Box,et al.  High-resolution imaging of Kepler planet host candidates - A comprehensive comparison of different techniques , 2014, 1405.3120.

[48]  R. Riddle,et al.  The rapid transient surveyor , 2016, Astronomical Telescopes + Instrumentation.

[49]  Richard W. Pogge,et al.  The Kilodegree Extremely Little Telescope (KELT): A Small Robotic Telescope for Large‐Area Synoptic Surveys , 2007, 0704.0460.

[50]  Eric B. Ford,et al.  Dynamical Instabilities and the Formation of Extrasolar Planetary Systems , 1996, Science.

[51]  Sara Seager,et al.  TOWARD THE MINIMUM INNER EDGE DISTANCE OF THE HABITABLE ZONE , 2013, 1304.3714.

[52]  J. G. Robertson,et al.  GETTING LUCKY WITH ADAPTIVE OPTICS: FAST ADAPTIVE OPTICS IMAGE SELECTION IN THE VISIBLE WITH A LARGE TELESCOPE , 2008, 0805.1921.

[53]  Edward Gillen,et al.  The Next Generation Transit Survey (NGTS) , 2018 .

[54]  Pravin Chordia,et al.  Bringing the Visible Universe into Focus with Robo-AO , 2013, Journal of visualized experiments : JoVE.

[55]  David R. Ciardi,et al.  ADAPTIVE OPTICS IMAGES OF KEPLER OBJECTS OF INTEREST , 2012, 1205.5535.

[56]  E. Kerins,et al.  High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP). I. Lucky imaging observations of 101 systems in the southern hemisphere , 2016, 1603.03274.

[57]  D. Barrado,et al.  Multiplicity in transiting planet-host stars - A lucky imaging study of Kepler candidates , 2012, 1208.0242.

[58]  Y. Lithwick,et al.  FREQUENCY OF CLOSE COMPANIONS AMONG KEPLER PLANETS—A TRANSIT TIME VARIATION STUDY , 2013, 1308.3751.

[59]  Justin R. Crepp,et al.  HIGH-RESOLUTION MULTI-BAND IMAGING FOR VALIDATION AND CHARACTERIZATION OF SMALL KEPLER PLANETS , 2014, 1411.3621.

[60]  Las Cumbres Observatory Global Telescope Network,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA , 2012, 1202.5852.

[61]  A. S. Fruchter,et al.  Drizzle: A Method for the Linear Reconstruction of Undersampled Images , 1998 .

[62]  B. Enoch,et al.  The WASP Project and the SuperWASP Cameras , 2006, astro-ph/0608454.

[63]  Christoph Baranec,et al.  ROBO-AO KEPLER PLANETARY CANDIDATE SURVEY. II. ADAPTIVE OPTICS IMAGING OF 969 KEPLER EXOPLANET CANDIDATE HOST STARS , 2016, 1604.08604.

[64]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .