Opportunities and challenges for spintronics in the microelectronics industry

Spintronic devices exploit the spin, as well as the charge, of electrons and could bring new capabilities to the microelectronics industry. However, in order for spintronic devices to meet the ever-increasing demands of the industry, innovation in terms of materials, processes and circuits are required. Here, we review recent developments in spintronics that could soon have an impact on the microelectronics and information technology industry. We highlight and explore four key areas: magnetic memories, magnetic sensors, radio-frequency and microwave devices, and logic and non-Boolean devices. We also discuss the challenges—at both the device and the system level—that need be addressed in order to integrate spintronic materials and functionalities into mainstream microelectronic platforms. This Review Article examines the potential of spintronics in four key areas of application —memories, sensors, microwave devices, and logic devices — and discusses the challenges that need be addressed in order to integrate spintronic materials and functionalities into mainstream microelectronic platforms.

[1]  G. Jakob,et al.  Efficient metallic spintronic emitters of ultrabroadband terahertz radiation , 2016 .

[2]  Yongsung Ji,et al.  Embedded STT-MRAM in 28-nm FDSOI Logic Process for Industrial MCU/IoT Application , 2018, 2018 IEEE Symposium on VLSI Technology.

[3]  A. Slavin,et al.  Terahertz-Frequency Signal Source Based on an Antiferromagnetic Tunnel Junction , 2018, IEEE Magnetics Letters.

[4]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[5]  Jean-Christophe Toussaint,et al.  Simultaneous resolution of the micromagnetic and spin transport equations applied to current-induced domain wall dynamics , 2016 .

[6]  U. Ebels,et al.  Frequency shift keying by current modulation in a MTJ-based STNO with high data rate , 2017, 1707.04467.

[7]  Christoph Adelmann,et al.  Experimental prototype of a spin-wave majority gate , 2016, ArXiv.

[8]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[9]  M. O. A. Ellis,et al.  Atomistic spin model simulations of magnetic nanomaterials , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  Hitoshi Kubota,et al.  Scaling up electrically synchronized spin torque oscillator networks , 2018, Scientific Reports.

[11]  Hyuncheol Park,et al.  Spin nano–oscillator–based wireless communication , 2014, Scientific Reports.

[12]  J. Prieto,et al.  Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin–orbit torque , 2015, Nature Communications.

[13]  S. Datta,et al.  Electronic analog of the electro‐optic modulator , 1990 .

[14]  J. Sinova,et al.  Spin Hall effects , 2015 .

[15]  H. Ohno,et al.  Current-induced torques in magnetic materials. , 2012, Nature materials.

[16]  Claude Fermon,et al.  Nanomagnetism: Applications and Perspectives: Applications and Perspectives , 2017 .

[17]  Mohamad Towfik Krounbi,et al.  Basic principles of STT-MRAM cell operation in memory arrays , 2013 .

[18]  Ilya Krivorotov,et al.  Ultra-fast wide band spectrum analyzer based on a rapidly tuned spin-torque nano-oscillator , 2018, Applied Physics Letters.

[19]  Anders Eklund,et al.  Spin-Torque and Spin-Hall Nano-Oscillators , 2015, Proceedings of the IEEE.

[20]  Santiago Serrano-Guisan,et al.  Room temperature direct detection of low frequency magnetic fields in the 100 pT/Hz0.5 range using large arrays of magnetic tunnel junctions , 2014 .

[21]  P. Pirro,et al.  An analog magnon adder for all-magnonic neurons , 2018, Journal of Applied Physics.

[22]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[23]  H. Ohno,et al.  Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system. , 2015, Nature materials.

[24]  M. Shimizu,et al.  Voltage-control spintronics memory (VoCSM) having potentials of ultra-low energy-consumption and high-density , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[25]  B. Diény,et al.  Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications , 2017 .

[26]  Nicolas Rougemaille,et al.  Anatomy and Giant Enhancement of the Perpendicular Magnetic Anisotropy of Cobalt-Graphene Heterostructures. , 2015, Nano letters.

[27]  A. Serga,et al.  Magnon transistor for all-magnon data processing , 2014, Nature Communications.

[28]  S. Fukami,et al.  Electrical control of the ferromagnetic phase transition in cobalt at room temperature. , 2011, Nature materials.

[29]  Kang L. Wang,et al.  Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure. , 2014, Nature materials.

[30]  Sergey Ganichev,et al.  Spin photocurrents in quantum wells , 2003 .

[31]  Gerhard P. Hancke,et al.  A Survey on 5G Networks for the Internet of Things: Communication Technologies and Challenges , 2018, IEEE Access.

[32]  P. Bortolotti,et al.  Analog and Digital Phase Modulation and Signal Transmission with Spin-Torque Nano-Oscillators , 2019, Physical Review Applied.

[33]  J. Swerts,et al.  Manufacturable 300mm platform solution for Field-Free Switching SOT-MRAM , 2019, 2019 Symposium on VLSI Technology.

[34]  Marius V. Costache,et al.  Strongly anisotropic spin relaxation in graphene–transition metal dichalcogenide heterostructures at room temperature , 2017, 1710.11568.

[35]  Bernard Dieny,et al.  Magnetoresistive Random Access Memory , 2016, Proceedings of the IEEE.

[36]  A. Fert,et al.  Significant Dzyaloshinskii–Moriya interaction at graphene–ferromagnet interfaces due to the Rashba effect , 2017, Nature Materials.

[37]  S. Bandiera,et al.  Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.

[38]  A. Thean,et al.  Spintronic majority gates , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[39]  Nazarov,et al.  Finite-element theory of transport in ferromagnet-normal metal systems , 2000, Physical review letters.

[40]  Rudy Lauwereins,et al.  Exchange-driven Magnetic Logic , 2017, Scientific Reports.

[41]  B. Diény,et al.  Novel approach for nano-patterning magnetic tunnel junctions stacks at narrow pitch: A route towards high density STT-MRAM applications , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[42]  Michael Schneider,et al.  Realization of a nanoscale magnonic directional coupler for all-magnon circuits , 2019 .

[43]  J. Nowak,et al.  STT-MRAM with double magnetic tunnel junctions , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[44]  Denise Hinzke,et al.  Towards multiscale modeling of magnetic materials : Simulations of FePt , 2008 .

[45]  T. Rasing,et al.  All-optical magnetic recording with circularly polarized light. , 2007, Physical review letters.

[46]  A. Panchula,et al.  Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers , 2004, Nature materials.

[47]  Hiroyuki Takagi,et al.  The role of Snell’s law for a magnonic majority gate , 2017, Scientific Reports.

[48]  David Blaauw,et al.  A 1-Mb 28-nm 1T1MTJ STT-MRAM With Single-Cap Offset-Cancelled Sense Amplifier and In Situ Self-Write-Termination , 2019, IEEE Journal of Solid-State Circuits.

[49]  T. Ghani,et al.  Proposal of a Spin Torque Majority Gate Logic , 2010, IEEE Electron Device Letters.

[50]  B. V. van Wees,et al.  Spin caloritronics. , 2011, Nature materials.

[51]  Sebastian Luber,et al.  Topologically protected vortex structures for low-noise magnetic sensors with high linear range , 2018, Nature Electronics.

[52]  M. Wojtaszek,et al.  Supplementary information for ’ Proximity induced room-temperature ferromagnetism in graphene probed with spin currents ’ , 2016 .

[53]  V. Javerliac,et al.  SPICE modelling of magnetic tunnel junctions written by spin-transfer torque , 2010 .

[54]  Frank Ellinger,et al.  Vortex spin-torque oscillator stabilized by phase locked loop using integrated circuits , 2017 .

[55]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[56]  H. Ohno,et al.  Semiconductor spintronics , 2002 .

[57]  Yoichi Shiota,et al.  Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. , 2011, Nature materials.

[58]  Kang L. Wang,et al.  Non-volatile magnonic logic circuits engineering , 2010, 1012.4768.

[59]  Mark D. Stiles,et al.  Spin-Transfer Torque and Dynamics , 2006 .

[60]  A Imre,et al.  Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata , 2006, Science.

[61]  Guillaume Prenat,et al.  Comparison of Verilog-A compact modelling strategies for spintronic devices , 2014 .

[62]  Binasch,et al.  Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. , 1989, Physical review. B, Condensed matter.

[63]  Paulo P. Freitas,et al.  Low frequency picotesla field detection using hybrid MgO based tunnel sensors , 2007 .

[64]  Andrew D. Kent,et al.  Efficient spin current generation in low-damping Mg(Al, Fe)2O4 thin films , 2019, Applied Physics Letters.

[65]  S. Yuasa,et al.  A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy , 2016, Scientific Reports.

[66]  Juan Trastoy,et al.  Wireless communication between two magnetic tunnel junctions acting as oscillator and diode , 2020 .

[67]  Wei Han,et al.  Graphene spintronics. , 2014, Nature nanotechnology.

[68]  Damien Querlioz,et al.  Neuromorphic computing with nanoscale spintronic oscillators , 2017, Nature.

[69]  J. Sinova,et al.  Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems , 2018, Reviews of Modern Physics.

[70]  L. J. Sham,et al.  Spin-based logic in semiconductors for reconfigurable large-scale circuits , 2007, Nature.

[71]  J. Lam,et al.  22-nm FD-SOI Embedded MRAM with Full Solder Reflow Compatibility and Enhanced Magnetic Immunity , 2018, 2018 IEEE Symposium on VLSI Technology.

[72]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[73]  I. Young,et al.  Beyond CMOS computing with spin and polarization , 2018 .

[74]  Atsufumi Hirohata,et al.  Perpendicular Magnetic Anisotropy in Heusler Alloy Films and Their Magnetoresistive Junctions , 2018, Materials.

[75]  Takayuki Kawahara,et al.  Spin-transfer torque RAM technology: Review and prospect , 2012, Microelectron. Reliab..

[76]  Igor Zutic,et al.  Roadmap for Emerging Materials for Spintronic Device Applications , 2015, IEEE Transactions on Magnetics.

[77]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[78]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[79]  T. Ghani,et al.  MRAM as Embedded Non-Volatile Memory Solution for 22FFL FinFET Technology , 2018, 2018 IEEE International Electron Devices Meeting (IEDM).

[80]  Juan Trastoy,et al.  Detection of the Microwave Emission from a Spin-Torque Oscillator by a Spin Diode , 2020 .

[81]  Satoshi Sugahara,et al.  Spin-Transistor Electronics: An Overview and Outlook , 2010, Proceedings of the IEEE.

[82]  C. Wiegand,et al.  2 MB Array-Level Demonstration of STT-MRAM Process and Performance Towards L4 Cache Applications , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[83]  Y. Fainman,et al.  All-optical control of ferromagnetic thin films and nanostructures , 2014, Science.

[84]  V. G. Harris,et al.  Modern Microwave Ferrites , 2012, IEEE Transactions on Magnetics.

[85]  Jong-Ryul Jeong,et al.  Field-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures. , 2016, Nature nanotechnology.

[86]  S. Urazhdin,et al.  Magnetization oscillations and waves driven by pure spin currents , 2016, 1609.06899.

[87]  Hanan Dery,et al.  A two-dimensional spin field-effect switch , 2016, Nature Communications.

[88]  Toshiyuki Yamane,et al.  Recent Advances in Physical Reservoir Computing: A Review , 2018, Neural Networks.

[89]  J. Slonczewski Current-driven excitation of magnetic multilayers , 1996 .

[90]  B. Diény,et al.  A highly thermally stable sub-20 nm magnetic random-access memory based on perpendicular shape anisotropy. , 2018, Nanoscale.

[91]  Tomasz Stobiecki,et al.  Reduction of low frequency magnetic noise by voltage-induced magnetic anisotropy modulation in tunneling magnetoresistance sensors , 2014 .

[92]  C. Marrows,et al.  The 2017 Magnetism Roadmap , 2017 .

[93]  Diana Tsvetanova,et al.  SOT-MRAM 300MM Integration for Low Power and Ultrafast Embedded Memories , 2018, 2018 IEEE Symposium on VLSI Circuits.

[94]  R. Duine,et al.  New perspectives for Rashba spin-orbit coupling. , 2015, Nature materials.

[95]  H. Ohno,et al.  Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion in CoFeB∕MgO∕CoFeB pseudo-spin-valves annealed at high temperature , 2008 .

[96]  John Bowers,et al.  Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics , 2019, Optica.

[97]  Bernard Dieny,et al.  Ultra-fast sweep-tuned spectrum analyzer with temporal resolution based on a spin-torque nano-oscillator. , 2020, Nano letters.

[98]  Hideo Ohno,et al.  Characterization of spin–orbit torque-controlled synapse device for artificial neural network applications , 2018, Japanese Journal of Applied Physics.

[99]  D. Ralph,et al.  Spin transfer torques , 2007, 0711.4608.

[100]  Pavel Ripka,et al.  Magnetoresistive Sensor Development Roadmap (Non-Recording Applications) , 2019, IEEE Transactions on Magnetics.

[101]  J. Park,et al.  Control of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayers , 2017 .

[102]  Stephan Roche,et al.  Giant Spin Lifetime Anisotropy in Graphene Induced by Proximity Effects. , 2017, Physical review letters.

[103]  T. Endoh,et al.  14ns write speed 128Mb density Embedded STT-MRAM with endurance>1010 and 10yrs retention@85°C using novel low damage MTJ integration process , 2018, 2018 IEEE International Electron Devices Meeting (IEDM).

[104]  Christoph Vogler,et al.  A self-consistent spin-diffusion model for micromagnetics , 2015, Scientific Reports.

[105]  T. Jungwirth,et al.  Experimental observation of the optical spin transfer torque , 2012, Nature Physics.

[106]  A. Fert,et al.  Field-free switching of a perpendicular magnetic tunnel junction through the interplay of spin–orbit and spin-transfer torques , 2018, Nature Electronics.

[107]  Masahito Yamaguchi,et al.  Electrical and optical spin injection in ferromagnet/semiconductor heterostructures , 2011 .

[108]  H. Ohno,et al.  Electric-field control of ferromagnetism , 2000, Nature.

[109]  H. Beere,et al.  All-electric all-semiconductor spin field-effect transistors. , 2015, Nature nanotechnology.

[110]  W. Rippard,et al.  Switching Distributions for Perpendicular Spin-Torque Devices Within the Macrospin Approximation , 2012, IEEE Transactions on Magnetics.

[111]  Atsufumi Hirohata,et al.  Over 50% reduction in the formation energy of Co-based Heusler alloy films by two-dimensional crystallisation , 2014 .

[112]  Uwe Bauer,et al.  Magneto-ionic control of interfacial magnetism. , 2014, Nature materials.

[113]  A Fukushima,et al.  Mutual synchronization of spin torque nano-oscillators through a long-range and tunable electrical coupling scheme , 2016, Nature Communications.

[114]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[115]  J. Åkerman,et al.  Two-dimensional mutually synchronized spin Hall nano-oscillator arrays for neuromorphic computing , 2019, Nature Nanotechnology.

[116]  Ana Silva,et al.  Linearization strategies for high sensitivity magnetoresistive sensors , 2015 .

[117]  Stuart Parkin,et al.  Memory on the racetrack. , 2015, Nature nanotechnology.

[118]  Michael A. McGuire,et al.  Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures , 2018, Science.

[119]  Edmund R. Nowak,et al.  Evolution of barrier-resistance noise in CoFeB/MgO/CoFeB tunnel junctions during annealing , 2010 .

[120]  S. Urazhdin,et al.  Magnetic nano-oscillator driven by pure spin current. , 2012, Nature materials.

[121]  Baoshun Zhang,et al.  Giant spin-torque diode sensitivity in the absence of bias magnetic field , 2016, Nature communications.

[122]  S. Yuasa,et al.  Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions , 2004, Nature materials.

[123]  D. Ralph,et al.  Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction devices. , 2012, Physical review letters.

[124]  Brian M. Sutton,et al.  Stochastic p-bits for Invertible Logic , 2016, 1610.00377.

[125]  J. Walowski,et al.  Perspective: Ultrafast magnetism and THz spintronics , 2016 .

[126]  Andrew D Kent,et al.  A new spin on magnetic memories. , 2015, Nature nanotechnology.

[127]  Dmitri E. Nikonov,et al.  Modeling and Design of Spintronic Integrated Circuits , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[128]  Mario Carpentieri,et al.  Experimental Demonstration of Spintronic Broadband Microwave Detectors and Their Capability for Powering Nanodevices , 2019, Physical Review Applied.

[129]  D. Awschalom,et al.  Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors , 2013, Science.

[130]  R. Cowburn,et al.  Room temperature magnetic quantum cellular automata , 2000, Science.

[131]  Ricardo Ferreira,et al.  Spintronic Sensors , 2016, Proceedings of the IEEE.

[132]  C. Adelmann,et al.  A majority gate with chiral magnetic solitons , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[133]  Martin S. Brandt,et al.  Strain-controlled nonvolatile magnetization switching , 2013, 1307.2433.

[134]  John Robertson,et al.  Insulator-to-Metallic Spin-Filtering in 2D-Magnetic Tunnel Junctions Based on Hexagonal Boron Nitride. , 2018, ACS nano.

[135]  Martina Müller,et al.  Magnetoresistance in double spin filter tunnel junctions with nonmagnetic electrodes and its unconventional bias dependence. , 2009, Physical review letters.

[136]  Robert M. White,et al.  Two-terminal spin–orbit torque magnetoresistive random access memory , 2018, Nature Electronics.

[137]  Everton Bonturim,et al.  Scalable energy-efficient magnetoelectric spin–orbit logic , 2018, Nature.

[138]  Benjamin Krueger,et al.  Magnetic Skyrmion as a Nonlinear Resistive Element: A Potential Building Block for Reservoir Computing , 2017, 1702.04298.

[139]  L. C. Li,et al.  Magnetic tunnel junction based out-of-plane field sensor with perpendicular magnetic anisotropy in reference layer , 2015 .