ON THE DISTANCE OF THE MAGELLANIC CLOUDS USING CEPHEID NIR AND OPTICAL–NIR PERIOD–WESENHEIT RELATIONS

We present the largest near-infrared (NIR) data sets, JHKs, ever collected for classical Cepheids in the Magellanic Clouds (MCs). We selected fundamental (FU) and first overtone (FO) pulsators, and found 4150 (2571 FU, 1579 FO) Cepheids for Small Magellanic Cloud (SMC) and 3042 (1840 FU, 1202 FO) for Large Magellanic Cloud (LMC). Current sample is 2-3 times larger than any sample used in previous investigations with NIR photometry. We also discuss optical VI photometry from OGLE-III. NIR and optical-NIR Period-Wesenheit (PW) relations are linear over the entire period range (0.0 < log P FU ≤ 1.65) and their slopes are, within the intrinsic dispersions, common between the MCs. These are consistent with recent results from pulsation models and observations suggesting that the PW relations are minimally affected by the metal content. The new FU and FO PW relations were calibrated using a sample of Galactic Cepheids with distances based on trigonometric parallaxes and Cepheid pulsation models. By using FU Cepheids we found a true distance moduli of 18.45 ± 0.02(random) ± 0.10(systematic) mag (LMC) and 18.93 ± 0.02(random) ± 0.10(systematic) mag (SMC). These estimates are the weighted mean over 10 PW relations and the systematic errors account for uncertainties in the zero point and in the reddening law. We found similar distances using FO Cepheids (18.60 ± 0.03(random) ± 0.10(systematic) mag (LMC) and 19.12 ± 0.03(random) ± 0.10(systematic) mag (SMC)). These new MC distances lead to the relative distance, Δμ = 0.48 ± 0.03 mag (FU, log P = 1) and Δμ = 0.52 ± 0.03 mag (FO, log P = 0.5), which agrees quite well with previous estimates based on robust distance indicators.

[1]  V. Ripepi,et al.  Predicted properties of galactic and magellanic classical Cepheids in the SDSS filters , 2012, 1209.4090.

[2]  B. Madore,et al.  A PHYSICALLY BASED METHOD FOR SCALING CEPHEID LIGHT CURVES FOR FUTURE DISTANCE DETERMINATIONS , 2010, 1006.2317.

[3]  M. Feast,et al.  Period-luminosity relations of type II Cepheids in the Magellanic Clouds , 2010, 1012.0098.

[4]  C. R. James,et al.  The Carina Project. IV. Radial Velocity Distribution , 2011, 1102.3038.

[5]  A. J. Drake,et al.  The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations , 2000, astro-ph/0001272.

[6]  S. E. Persson,et al.  New Cepheid Period-Luminosity Relations for the Large Magellanic Cloud: 92 Near-Infrared Light Curves , 2004 .

[7]  M. Feast,et al.  The Cepheid period-luminosity zero-point from Hipparcos trigonometrical parallaxes† , 1997 .

[8]  C. D. Laney,et al.  Infrared photometry of Magellanic Cloud Cepheids. Intrinsic properties of Cepheids and the spatial structure of the Clouds , 1986 .

[9]  J. Carpenter Color Transformations for the 2MASS Second Incremental Data Release , 2001, astro-ph/0101463.

[10]  S. Kanbur,et al.  The detailed forms of the LMC Cepheid PL and PLC relations , 2007, 0706.1762.

[11]  P. François,et al.  On the metallicity gradient of the Galactic disk , 2009, 0906.3140.

[12]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[13]  G. Bono,et al.  GALACTIC CEPHEIDS WITH SPITZER. I. LEAVITT LAW AND COLORS , 2009, 0911.2470.

[14]  C. D. Laney,et al.  The influence of chemical composition on the properties of Cepheid stars. II - The iron content ⋆ , 2008, 0807.1196.

[15]  Chow-Choong Ngeow,et al.  ON THE APPLICATION OF WESENHEIT FUNCTION IN DERIVING DISTANCE TO GALACTIC CEPHEIDS , 2012, 1202.0339.

[16]  J. Beaulieu,et al.  NEW VIEWS OF THE MAGELLANIC CLOUDS , 1999 .

[17]  THE DISTRIBUTION OF THE ELEMENTS IN THE GALACTIC DISK. III. A RECONSIDERATION OF CEPHEIDS FROM l = 30° TO 250° , 2011, 1108.1947.

[18]  J. B. Marquette,et al.  The VMC survey - V. First results for classical Cepheids , 2012, 1204.2273.

[19]  J. P. Huchra,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[20]  W. Gieren,et al.  Mean JHK Magnitudes of Fundamental-Mode Cepheids from Single-Epoch Observations , 2005, astro-ph/0503598.

[21]  R. Rafikov,et al.  GLOBAL MODELING OF RADIATIVELY DRIVEN ACCRETION OF METALS FROM COMPACT DEBRIS DISKS ONTO WHITE DWARFS , 2011, 1106.1653.

[22]  Astronomy,et al.  New period-luminosity and period-color relations of classical Cepheids. II. Cepheids in LMC , 2004, 0810.1780.

[23]  C. D. Laney,et al.  Cepheid parallaxes and the Hubble constant , 2007, 0705.1592.

[24]  M. McCall,et al.  On Determining Extinction from Reddening , 2004 .

[25]  B. F. Madore,et al.  The period-luminosity relation. IV. Intrinsic relations and reddenings for the Large Magellanic Cloud Cepheids. , 1982 .

[26]  R. de Grijs,et al.  VISTA Variables in the Via Lactea (VVV): The public ESO near-IR variability survey of the Milky Way , 2009, 0912.1056.

[27]  D. Kato The IRSF Magellanic Clouds Point Source Catalog , 2007 .

[28]  B. Madore,et al.  Distance Moduli and Structure of the Magellanic Clouds from Near-Infrared Photometry of Classical Cepheids , 1987 .

[29]  M. Salaris,et al.  The distance to the LMC cluster NGC 1866; clues from the cluster Cepheid population , 2003 .

[30]  Wendy L. Freedman,et al.  CARNEGIE HUBBLE PROGRAM: A MID-INFRARED CALIBRATION OF THE HUBBLE CONSTANT , 2012, 1208.3281.

[31]  The Distribution Of The Elements In The Galactic Disk. III. A Reconsideration Of Cepheids From L=30 Degrees To 250 Degrees , 2011 .

[32]  Linda J. Smith,et al.  SPITZER SURVEY OF THE LARGE MAGELLANIC CLOUD, SURVEYING THE AGENTS OF A GALAXY'S EVOLUTION (SAGE). IV. DUST PROPERTIES IN THE INTERSTELLAR MEDIUM , 2005, Proceedings of the International Astronomical Union.

[33]  Sidney van den Bergh,et al.  The Galaxies of the Local Group , 1968 .

[34]  M. Marconi,et al.  Theoretical Models for Classical Cepheids. II. Period-Luminosity, Period-Color, and Period-Luminosity-Color Relations , 1998, astro-ph/9809127.

[35]  B. Pilecki,et al.  The dynamical mass of a classical Cepheid variable star in an eclipsing binary system , 2010, Nature.

[36]  M. Feast,et al.  Period–luminosity relations for type II Cepheids and their application , 2009, 0904.4701.

[37]  W. Gieren,et al.  CONCERNING THE CLASSICAL CEPHEID VIC WESENHEIT FUNCTION'S STRONG METALLICITY DEPENDENCE , 2011, 1110.1629.

[38]  W. Gieren,et al.  THE ARAUCARIA PROJECT: ACCURATE DETERMINATION OF THE DYNAMICAL MASS OF THE CLASSICAL CEPHEID IN THE ECLIPSING SYSTEM OGLE-LMC-CEP-1812 , 2011, 1109.5414.

[39]  M. Marconi,et al.  Classical Cepheid Pulsation Models. III. The Predictable Scenario , 1999, astro-ph/9908014.

[40]  N. Nardetto,et al.  Calibrating the Cepheid Period-Luminosity relation from the infrared surface brightness technique II. The effect of metallicity, and the distance to the LMC , 2011, 1109.2016.

[41]  Helmut Jerjen,et al.  Galaxies in the local volume , 2008 .

[42]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[43]  G. Fiorentino,et al.  Cepheid Pulsation Models at Varying Metallicity and ΔY/ΔZ , 2005 .

[44]  B. Madore,et al.  CONCERNING THE SLOPE OF THE CEPHEID PERIOD–LUMINOSITY RELATION , 2009, 0902.3747.

[45]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[46]  B. Madore,et al.  The Hubble Constant , 2010, 1004.1856.

[47]  C. D. Laney,et al.  Cepheid period-luminosity relations in K, H, J and V , 1994 .

[48]  A. Drake,et al.  Geometry of the Large Magellanic Cloud Disk: Results from MACHO and the Two Micron All Sky Survey , 2004 .

[49]  K. Ulaczyk,et al.  The Optical Gravitational Lensing Experiment. Gaia South Ecliptic Pole Field as Seen by OGLE-IV , 2012, 1210.1219.

[50]  S. E. Persson,et al.  THE CARNEGIE HUBBLE PROGRAM: THE LEAVITT LAW AT 3.6 μm AND 4.5 μm IN THE LARGE MAGELLANIC CLOUD , 2011, 1108.4672.

[51]  C. Ngeow,et al.  Further empirical evidence for the non‐linearity of the period–luminosity relations as seen in the Large Magellanic Cloud Cepheids , 2005 .

[52]  E. Tolstoy,et al.  Star-Formation Histories, Abundances, and Kinematics of Dwarf Galaxies in the Local Group , 2009, 0904.4505.

[53]  W. Freedman,et al.  Hubble Space Telescope Fine Guidance Sensor Parallaxes of Galactic Cepheid Variable Stars: Period-Luminosity Relations , 2007 .

[54]  M. Marconi,et al.  INSIGHTS INTO THE CEPHEID DISTANCE SCALE , 2010, 1004.0363.

[55]  J. Peñarrubia,et al.  A METHOD FOR MEASURING (SLOPES OF) THE MASS PROFILES OF DWARF SPHEROIDAL GALAXIES , 2011, 1108.2404.

[56]  J. Buonaccorsi,et al.  PERIOD-LUMINOSITY RELATIONS DERIVED FROM THE OGLE-III FUNDAMENTAL MODE CEPHEIDS , 2008, 0811.2000.