Radiobiological Investigation of Dose-Rate Effects in Intensity-Modulated Radiation Therapy

Background and Purpose:Intensity-modulated radiation therapy (IMRT) has proven extraordinary capability in physical terms such as target conformity, dose escalation in the target volume, and sparing of neighboring organs at risk. The radiobiological consequences of the protracted dose delivery for cell survival and cell cycle progression are still unclear and shall be examined in this study.Material and Methods:Human lymphoblasts (TK6) and human melanoma cells (MeWo) were irradiated with protocols of increasing dose protraction. In addition, a new biophysical phantom was developed and used to transfer clinical IMRT plans to experimental cell irradiation. Clonogenic cell survival and cell cycle analysis were performed after various irradiation experiments.Results:In a first series of experiments, melanoma cells showed a highly significant increase of survival of 6.0% after protracted dose delivery of 2 Gy compared to conventional fast application with the same dose. Lymphoblastoid cells also showed a significant increase of survival of 2.2%. Experiments with patient plans in the phantom confirmed the trend of increased cell survival after protracted dose delivery. Cells were irradiated at 13 points in four different IMRT plans. In comparison to irradiation with application of the same dose in a classic four-field box, a significantly increased survival of 5.1% (mean value) was determined.Conclusion:Even at fraction times of 15–30 min the protracted dose delivery increases the survival rates in cell culture. The altered survival rates indicate the importance of the dose rate in the effectivity of IMRT. Besides physical parameters the consideration of biological factors might contribute to the optimization of IMRT in the future.Hintergrund und Ziel:Die intensitätsmodulierte Strahlentherapie (IMRT) ist ein modernes Radiotherapieverfahren, welches unter physikalischen Gesichtspunkten wie der Zielkonformität, Dosiseskalation und Schonung von Risikostrukturen hervorragende Ergebnisse erzielen kann. Doch die strahlenbiologischen Konsequenzen für Zellüberleben und Zellzyklusprogression, die sich aus der protrahierten Dosisapplikation ergeben könnten, sind noch unklar und sollen in dieser Arbeit untersucht werden.Material und Methodik:Humane Lymphoblasten (TK6) und humane Melanomzellen (MeWo) wurden mit Protokollen ansteigender Dosisprotrahierung bestrahlt. Zudem wurde ein neuartiges biophysikalisches Phantom entwickelt, welches die Übertragung klinischer IMRT-Pläne in ein vielseitiges experimentelles Setup ermöglicht. Klonogenes Zellüberleben sowie Zellzyklusprogression nach verschiedenen Bestrahlungsexperimenten wurden untersucht.Ergebnisse:In einer ersten Versuchsreihe zeigten die Melanomzellen ein signifikant um 6,0% erhöhtes Zellüberleben, wenn 2 Gy stark protrahiert appliziert wurden, verglichen mit schneller herkömmlicher Bestrahlung. Auch die Lymphoblasten zeigten ein um 2,2% signifikant erhöhtes Überleben. Die Experimente im Phantom mit Patientenplänen bestätigten den Trend des erhöhten Überlebens nach Dosisprotrahierung. Die Zellen wurden an 13 verschiedenen Punkten in vier IMRT-Plänen bestrahlt. Im Vergleich zur Bestrahlung mit der gleichen Dosis in einer konventionellen Vierfelderbox war das Überleben nach IMRT durchschnittlich um 5,1% erhöht.Schlussfolgerung:Selbst bei Fraktionszeiten von 15–30 min führt die protrahierte Dosisapplikation zu einem erhöhten Zellüberleben in Zellkultur. Die veränderten Überlebensraten zeigen die Bedeutung der Dosisrate für die Effektivität der IMRT. Neben physikalischen Parametern der Planbeurteilung müssen auch biologische Parameter zur weiteren Optimierung der IMRT herangezogen werden.

[1]  E. Furth,et al.  Quantitative assay for mutation in diploid human lymphoblasts using microtiter plates. , 1981, Analytical biochemistry.

[2]  T. Bortfeld,et al.  X-ray field compensation with multileaf collimators. , 1994, International journal of radiation oncology, biology, physics.

[3]  T. McMillan,et al.  Dose-rate effect for DNA damage induced by ionizing radiation in human tumor cells. , 1994, Radiation research.

[4]  M. Joiner Induced radioresistance: an overview and historical perspective. , 1994, International journal of radiation biology.

[5]  P Lambin,et al.  Might intrinsic radioresistance of human tumour cells be induced by radiation? , 1996, International journal of radiation biology.

[6]  M. Elkind Cell-cycle sensitivity, recovery from radiation damage and a new paradigm for risk assessment. , 1997, International journal of radiation biology.

[7]  J A Purdy,et al.  3D treatment planning and intensity-modulated radiation therapy. , 1999, Oncology.

[8]  R. Siochi,et al.  Minimizing static intensity modulation delivery time using an intensity solid paradigm. , 1999, International journal of radiation oncology, biology, physics.

[9]  D P Dearnaley,et al.  Intensity modulated radiation therapy: a clinical review. , 2000, The British journal of radiology.

[10]  F. Lohr,et al.  Comparison of intensity-modulated radiotherapy with conventional conformal radiotherapy for complex-shaped tumors. , 2000, International journal of radiation oncology, biology, physics.

[11]  C. De Wagter,et al.  Combining the advantages of step-and-shoot and dynamic delivery of intensity-modulated radiotherapy by interrupted dynamic sequences. , 2001, International journal of radiation oncology, biology, physics.

[12]  James A. Purdy,et al.  Intensity-modulated radiotherapy: current status and issues of interest. , 2001, International journal of radiation oncology, biology, physics.

[13]  G J Budgell,et al.  Improved delivery efficiency for step and shoot intensity modulated radiotherapy using a fast-tuning magnetron. , 2001, Physics in medicine and biology.

[14]  R. Traub,et al.  Temporal Optimization of Radiotherapy Treatment Fractions , 2001 .

[15]  B. Rhein,et al.  Dosimetrische Verifikation von IMRT-Gesamtplänen am Deutschen Krebsforschungszentrum Heidelberg , 2002 .

[16]  A. Eisbruch Clinical aspects of IMRT for head-and-neck cancer. , 2002, Medical dosimetry : official journal of the American Association of Medical Dosimetrists.

[17]  Intensity-modulated radiation therapy (IMRT): the radiation oncologist's perspective. , 2002, Medical dosimetry : official journal of the American Association of Medical Dosimetrists.

[18]  T. Bortfeld,et al.  Inverse Treatment Planning and Stereotactic Intensity-Modulated Radiation Therapy (IMRT) of the Tumor and Lymph Node Levels for Nasopharyngeal Carcinomas Description of Treatment Technique, Plan Comparison, and Case Study , 2002, Strahlentherapie und Onkologie.

[19]  [Dosimetric verification of IMRT treatment plans at the German Cancer Research Center (DKFZ)]. , 2002, Zeitschrift fur medizinische Physik.

[20]  Michael J. Zelefsky,et al.  High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. , 2002, International journal of radiation oncology, biology, physics.

[21]  L Xing,et al.  Minimizing delivery time and monitor units in static IMRT by leaf-sequencing. , 2002, Physics in medicine and biology.

[22]  Avraham Eisbruch,et al.  Intensity-modulated radiotherapy of head-and-neck cancer: encouraging early results. , 2002, International journal of radiation oncology, biology, physics.

[23]  E. B. Butler,et al.  Intensity Modulated Radiotherapy (IMRT) Decreases Treatment-Related Morbidity and Potentially Enhances Tumor Control , 2002, Cancer investigation.

[24]  W. Regine,et al.  The Radiation Oncologist's Perspective on Stereotactic Radiosurgery , 2002, Technology in cancer research & treatment.

[25]  Does the time required to deliver IMRT reduce its biological effectiveness , 2002 .

[26]  Mikael Karlsson,et al.  The effect of fraction time in intensity modulated radiotherapy: theoretical and experimental evaluation of an optimisation problem. , 2003, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[27]  S. Nill,et al.  Stereotactic Intensity-Modulated Radiation Therapy (IMRT) and Inverse Treatment Planning for Advanced Pleural Mesothelioma , 2003, Strahlentherapie und Onkologie.

[28]  I. Zuna,et al.  Optimization of Radiation Therapy for Locally Advanced Adenoid Cystic Carcinomas with Infiltration of the Skull Base Using Photon Intensity-Modulated Radiation Therapy (IMRT) and a Carbon Ion Boost , 2003, Strahlentherapie und Onkologie.

[29]  F. Gum,et al.  Verification of IMRT: Techniques and Problems , 2004, Strahlentherapie und Onkologie.

[30]  L. Vakaet,et al.  Direct Segment Aperture and Weight Optimization for Intensity-Modulated Radiotherapy of Prostate Cancer , 2004, Strahlentherapie und Onkologie.