Reliable Averaging for the Primal Variable in the Courant FEM and Hierarchical Error Estimators on Red-Refined Meshes

Abstract A hierarchical a posteriori error estimator for the first-order finite element method (FEM) on a red-refined triangular mesh is presented for the 2D Poisson model problem. Reliability and efficiency with some explicit constant is proved for triangulations with inner angles smaller than or equal to π 2${\frac{\pi }{2}}$ . The error estimator does not rely on any saturation assumption and is valid even in the pre-asymptotic regime on arbitrarily coarse meshes. The evaluation of the estimator is a simple post-processing of the piecewise linear FEM without any extra solve plus a higher-order approximation term. The results also allow the striking observation that arbitrary local averaging of the primal variable leads to a reliable and efficient error estimation. Several numerical experiments illustrate the performance of the proposed a posteriori error estimator for computational benchmarks.

[1]  Carsten Carstensen,et al.  Explicit Error Estimates for Courant, Crouzeix-Raviart and Raviart-Thomas Finite Element Methods , 2012 .

[2]  A. Agouzal On the Saturation Assumption and Hierarchical a Posteriori Error Estimator , 2002 .

[3]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .

[4]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[5]  Ricardo H. Nochetto,et al.  Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.

[6]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[7]  Rodolfo Rodríguez A Posteriori Error Analysis in the Finite Element Method , 1994 .

[8]  Carsten Carstensen,et al.  Averaging technique for FE – a posteriori error control in elasticity. Part II: λ-independent estimates , 2001 .

[9]  Ralf Kornhuber,et al.  A posteriori error estimates for elliptic problems in two and three space dimensions , 1996 .

[10]  R. Verfürth,et al.  Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .

[11]  Christoph Ortner,et al.  Convergence of simple adaptive Galerkin schemes based on h − h/2 error estimators , 2010, Numerische Mathematik.

[12]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[13]  Carsten Carstensen,et al.  Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis , 2004 .

[14]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[15]  Ricardo H. Nochetto,et al.  Removing the saturation assumption in a posteriori error analysis , 1993 .

[16]  Carsten Carstensen,et al.  Averaging Techniques for a Posteriori Error Control in Finite Element and Boundary Element Analysis , 2007 .

[17]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[18]  Carsten Carstensen,et al.  Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis , 2004, Numerische Mathematik.

[19]  Carsten Carstensen,et al.  Averaging technique for a posteriori error control in elasticity. Part III: Locking-free nonconforming FEM , 2001 .

[20]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[21]  Randolph E. Bank,et al.  A posteriori error estimates based on hierarchical bases , 1993 .

[22]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[23]  Carsten Carstensen,et al.  Justification of the saturation assumption , 2016, Numerische Mathematik.

[24]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[25]  Carsten Carstensen,et al.  Averaging technique for FE – a posteriori error control in elasticity. Part I: Conforming FEM , 2001 .

[26]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[27]  Abdellatif Agouzal,et al.  Some remarks about the hierarchical a posteriori error estimate , 2004 .

[28]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[29]  Carsten Carstensen,et al.  An experimental survey of a posteriori Courant finite element error control for the Poisson equation , 2001, Adv. Comput. Math..

[30]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..