Relative Affine Structure: Canonical Model for 3D From 2D Geometry and Applications

We propose an affine framework for perspective views, captured by a single extremely simple equation based on a viewer-centered invariant we call relative affine structure. Via a number of corollaries of our main results we show that our framework unifies previous work-including Euclidean, projective and affine-in a natural and simple way, and introduces new, extremely simple algorithms for the tasks of reconstruction from multiple views, recognition by alignment, and certain image coding applications.

[1]  Chia-Hoang Lee Structure And Motion From Two Perspective Views Via Planar Patch , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[2]  Alex Pentland,et al.  Recursive estimation of structure and motion using relative orientation constraints , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Amnon Shashua,et al.  On Geomatric and Algebraic Aspects of 3D Affine and Projective Structures from Perspective 2D Views , 1993, Applications of Invariance in Computer Vision.

[4]  David W. Jacobs Space efficient 3-D model indexing , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  Rajiv Gupta,et al.  Stereo from uncalibrated cameras , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[6]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[7]  Alex Pentland,et al.  Recursive Estimation of Motion, Structure, and Focal Length , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Long Quan,et al.  Relative 3D Reconstruction Using Multiple Uncalibrated Images , 1995, Int. J. Robotics Res..

[9]  Edward M. Riseman,et al.  A data set for quantitative motion analysis , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  J J Koenderink,et al.  Affine structure from motion. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[11]  Amnon Shashua,et al.  Trilinearity in Visual Recognition by Alignment , 1994, ECCV.

[12]  Rajiv Gupta,et al.  Computing matched-epipolar projections , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[13]  O. Faugeras,et al.  On determining the fundamental matrix : analysis of different methods and experimental results , 1993 .

[14]  J. Oliensis,et al.  Incorporating motion error in multi-frame structure from motion , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[15]  S. B. Kang,et al.  Recovering 3 D Shape and Motion from Image Streams using Non-Linear Least Squares , 1993 .

[16]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[17]  G. Sparr An algebraic/analytic method for reconstruction from image correspondences , 1991 .

[18]  Olivier D. Faugeras,et al.  What can two images tell us about a third one? , 1994, ECCV.

[19]  Rachid Deriche,et al.  Robust Recovery of the Epipolar Geometry for an Uncalibrated Stereo Rig , 1994, ECCV.

[20]  Amnon Shashua,et al.  Projective depth: A geometric invariant for 3D reconstruction from two perspective/orthographic views and for visual recognition , 1993, 1993 (4th) International Conference on Computer Vision.

[21]  Paul A. Beardsley,et al.  Affine and Projective Structure from Motion , 1992, BMVC.

[22]  Long Quan Affine Stereo Calibration for Relative Affine Shape Reconstruction , 1993, BMVC.

[23]  O. Faugeras Stratification of three-dimensional vision: projective, affine, and metric representations , 1995 .

[24]  P. Beardsley,et al.  Affine and Projective Structure from Motion , 1992 .

[25]  Tomaso Poggio,et al.  Example Based Image Analysis and Synthesis , 1993 .

[26]  D. Jacobs Space Efficient 3D Model Indexing , 1992 .

[27]  C. Tomasi,et al.  Factoring image sequences into shape and motion , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[28]  Olivier D. Faugeras,et al.  Relative 3D positioning and 3D convex hull computation from a weakly calibrated stereo pair , 1993, 1993 (4th) International Conference on Computer Vision.

[29]  S. Ullman Aligning pictorial descriptions: An approach to object recognition , 1989, Cognition.

[30]  Harpreet S. Sawhney,et al.  3D geometry from planar parallax , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[31]  A. Shashua Correspondence and Affine Shape from Two Orthographic Views: Motion and Recognition , 1991 .

[32]  Nassir Navab,et al.  Relative affine structure: theory and application to 3D reconstruction from perspective views , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Amnon Shashua,et al.  Algebraic Functions For Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Olivier D. Faugeras,et al.  What can be seen in three dimensions with an uncalibrated stereo rig , 1992, ECCV.

[35]  O. D. Faugeras,et al.  Camera Self-Calibration: Theory and Experiments , 1992, ECCV.

[36]  Andrew Zisserman,et al.  Motion From Point Matches Using Affine Epipolar Geometry , 1994, ECCV.

[37]  Thomas S. Huang,et al.  Estimating three-dimensional motion parameters of a rigid planar patch, II: Singular value decomposition , 1982 .

[38]  Daphna Weinshall,et al.  Linear and incremental acquisition of invariant shape models from image sequences , 1993, 1993 (4th) International Conference on Computer Vision.

[39]  L. Gool,et al.  Affine reconstruction from perspective image pairs , 1993 .

[40]  P. Anandan,et al.  Direct recovery of shape from multiple views: a parallax based approach , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[41]  A. Shashua On Geometric and Algebraic Aspects of 3 D Affine and Projective Structures from Perspective 2 D Views , .

[42]  Richard I. Hartley,et al.  Projective Reconstruction and Invariants from Multiple Images , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Shimon Ullman,et al.  An Approach to Object Recognition: Aligning Pictorial Descriptions , 1986 .

[44]  Richard Szeliski,et al.  Recovering 3D Shape and Motion from Image Streams Using Nonlinear Least Squares , 1994, J. Vis. Commun. Image Represent..

[45]  Amnon Shashua,et al.  Projective Structure from Uncalibrated Images: Structure From Motion and Recognition , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Luc Van Gool,et al.  Affine Reconstruction from Perspective Image Pairs Obtained by a Translating Camera , 1993, Applications of Invariance in Computer Vision.

[47]  Gunnar Sparr,et al.  A Common Framework for Kinetic Depth, Reconstruction and Motion for Deformable Objects , 1994, ECCV.

[48]  Eamon B. Barrett,et al.  General methods for determining projective invariants in imagery , 1991, CVGIP Image Underst..

[49]  P. Anandan,et al.  Hierarchical Model-Based Motion Estimation , 1992, ECCV.

[50]  Thierry Viéville,et al.  Canonic Representations for the Geometries of Multiple Projective Views , 1994, ECCV.

[51]  Andrew Zisserman,et al.  Appendix—projective geometry for machine vision , 1992 .

[52]  Thierry Viéville,et al.  Canonical Representations for the Geometries of Multiple Projective Views , 1996, Comput. Vis. Image Underst..

[53]  Long Quan,et al.  Relative 3D Reconstruction Using Multiple Uncalibrated Images , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[54]  Amnon Shashua,et al.  The Quadric Reference Surface: Applications in Registering Views of Complex 3D Objects , 1994, ECCV.

[55]  A. Shashua Geometry and Photometry in 3D Visual Recognition , 1992 .

[56]  David A. Forsyth,et al.  Invariant Descriptors for 3D Object Recognition and Pose , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Allen R. Hanson,et al.  3D model acquisition from monocular image sequences , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[58]  Eamon B. Barrett,et al.  Robust algebraic invariant methods with applications in geometry and imaging , 1995, Optics & Photonics.

[59]  Rama Chellappa,et al.  Estimating the Kinematics and Structure of a Rigid Object from a Sequence of Monocular Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..