Unsupervised Segmentation of Greenhouse Plant Images Based on Statistical Method

[1]  Lingxian Zhang,et al.  A segmentation method for greenhouse vegetable foliar disease spots images using color information and region growing , 2017, Comput. Electron. Agric..

[2]  Baskar Ganapathysubramanian,et al.  Computer vision and machine learning for robust phenotyping in genome-wide studies , 2017, Scientific Reports.

[3]  Hanno Scharr,et al.  Leaf segmentation in plant phenotyping: a collation study , 2016, Machine Vision and Applications.

[4]  Sotirios A. Tsaftaris,et al.  Image-based plant phenotyping with incremental learning and active contours , 2014, Ecol. Informatics.

[5]  Yang Yu,et al.  Remote sensing image classification using layer-by-layer feature associative conditional random field , 2014 .

[6]  J. Reif,et al.  Precision phenotyping of biomass accumulation in triticale reveals temporal genetic patterns of regulation , 2013, Scientific Reports.

[7]  Vladlen Koltun,et al.  Parameter Learning and Convergent Inference for Dense Random Fields , 2013, ICML.

[8]  Wang Xiangdong,et al.  Recognition of Greenhouse Cucumber Disease Based on Image Processing Technology , 2013 .

[9]  Vladlen Koltun,et al.  Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials , 2011, NIPS.

[10]  Cui Yanli,et al.  Research on the color image segmentation of plant disease in the greenhouse , 2011, 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet).

[11]  Juan Carlos Niebles,et al.  Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words , 2008, International Journal of Computer Vision.

[12]  W. Eric L. Grimson,et al.  Spatial Latent Dirichlet Allocation , 2007, NIPS.

[13]  Wei Xie,et al.  New texture segmentation approach based on multiresoluton MRFs with variable weighting parameters in wavelet domain , 2007, International Symposium on Multispectral Image Processing and Pattern Recognition.

[14]  W. Eric L. Grimson,et al.  Unsupervised Activity Perception by Hierarchical Bayesian Models , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Antonio Criminisi,et al.  TextonBoost for Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly Modeling Texture, Layout, and Context , 2007, International Journal of Computer Vision.

[16]  Antonio Criminisi,et al.  TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-class Object Recognition and Segmentation , 2006, ECCV.

[17]  Yang Wang,et al.  A dynamic conditional random field model for foreground and shadow segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Antonio Criminisi,et al.  Object categorization by learned universal visual dictionary , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[19]  B. S. Manjunath,et al.  Multi-scale edge detection and image segmentation , 2005, 2005 13th European Signal Processing Conference.

[20]  Pietro Perona,et al.  A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[21]  Trevor Darrell,et al.  Conditional Random Fields for Object Recognition , 2004, NIPS.

[22]  Thomas L. Griffiths,et al.  The Author-Topic Model for Authors and Documents , 2004, UAI.

[23]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Hanna M. Wallach,et al.  Conditional Random Fields: An Introduction , 2004 .

[25]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[26]  Pau-Choo Chung,et al.  A Fast Algorithm for Multilevel Thresholding , 2001, J. Inf. Sci. Eng..

[27]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[28]  N. Otsu A threshold selection method from gray level histograms , 1979 .