Convergent evolution.

Convergent evolution is the process by which unrelated or distantly related organisms evolve similar body forms, coloration, organs, and adaptations. Natural selection can result in evolutionary convergence under several different circumstances. Species can converge in sympatry, as in mimicry complexes among insects, especially butterflies (coral snakes and their mimics constitute another well-known example). Mimicry evolves after one species, the 'model' has become aposematic (warningly colored) because it is toxic or poisonous and therefore protected (Wickler 1968). Two distinct kinds of mimicry are recognized, Batesian and Mullerian. In Batesian mimicry, the mimic is palatable or unprotected, but gains from being mistaken for the model, which is unpalatable or protected. Two protected model species can also converge because of the advantage of being mistaken for each other (Mullerian mimicry). Mimicry is an interesting consequence of warning coloration that nicely demonstrates the power of natural selection. An organism that commonly occurs in a community along with a poisonous or distasteful species can benefit from a resemblance to the warningly colored species, even though the 'mimic' itself is nonpoisonous and/or quite palatable. Because predators that have experienced contacts with the model species, and have learned to avoid it, mistake the mimic species for the model and avoid it as well. Such false warning coloration is termed Batesian mimicry after its discoverer.

[1]  W. Wickler Mimicry in plants and animals , 1969 .

[2]  H. Mooney,et al.  CONVERGENT EVOLUTION OF MEDITERRANEAN‐CLIMATE EVERGREEN SCLEROPHYLL SHRUBS , 1970, Evolution; international journal of organic evolution.

[3]  H. Recher Bird Species Diversity and Habitat Diversity in Australia and North America , 1969, The American Naturalist.

[4]  J. Grinnell Geography and Evolution , 1924 .

[5]  G. D,et al.  American Naturalist , 1867, Nature.