Conjugated‐Polymer Blends for Optoelectronics

Solution-processed polymer optoelectronic devices such as light-emitting diodes and solar cells have many advantages for large-area manufacture, and show increasing levels of performance. Here, we review recent progress in using blends of two conjugated polymers for optoelectronic devices. The blending of two or more polymers allows tuning of device performance, and for photovoltaics presents an attractive way to combine donor and acceptor materials with a morphology controlled by polymer phase separation. We discuss recent advances in imaging the microstructure of conjugated polymer blends, and we demonstrate how the blend structure leads to performance advantages in both LEDs and photovoltaic devices.

[1]  Richard H. Friend,et al.  Photovoltaic Performance and Morphology of Polyfluorene Blends: A Combined Microscopic and Photovoltaic Investigation , 2001 .

[2]  C. McNeill,et al.  Nanoscale quantitative chemical mapping of conjugated polymer blends. , 2006, Nano letters.

[3]  Alex K.-Y. Jen,et al.  Bright and efficient exciplex emission from light-emitting diodes based on hole-transporting amine derivatives and electron-transporting polyfluorenes , 2002 .

[4]  Yang Yang,et al.  Enhanced performance of white polymer light-emitting diodes using polymer blends as hole-transporting layers , 2006 .

[5]  Richard H. Friend,et al.  Barrier‐Free Electron–Hole Capture in Polymer Blend Heterojunction Light‐Emitting Diodes , 2003 .

[6]  E. List,et al.  Efficient single-layer yellow-light emitting-diodes with ladder-type poly( p-phenylene)/poly(decyl-thiophene) blends , 1999 .

[7]  F. E. Karasz,et al.  Optical and electroluminescent properties of polyfluorene copolymers and their blends , 2005 .

[8]  M. Kumke,et al.  Tuning of the Excited-State Properties and Photovoltaic Performance in PPV-Based Polymer Blends , 2008 .

[9]  Tracey M. Clarke,et al.  Free Energy Control of Charge Photogeneration in Polythiophene/Fullerene Solar Cells: The Influence of Thermal Annealing on P3HT/PCBM Blends , 2008 .

[10]  Massimo Lazzari,et al.  Block Copolymers as a Tool for Nanomaterial Fabrication , 2003 .

[11]  G. Gustafsson,et al.  Light-emitting diodes with variable colours from polymer blends , 1994, Nature.

[12]  Michael D. McGehee,et al.  Polymer-based solar cells , 2007 .

[13]  Richard A. L. Jones,et al.  Time-resolved light scattering studies of phase separation in thin film semiconducting polymer blends during spin-coating , 2005 .

[14]  Martin A. Green,et al.  Solar cell efficiency tables (Version 31) , 2008 .

[15]  J. W. Blatchford,et al.  Exciplex emission in bilayer polymer light-emitting devices , 1997 .

[16]  Richard H. Friend,et al.  Dual electron donor/electron acceptor character of a conjugated polymer in efficient photovoltaic diodes , 2007 .

[17]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[18]  R. Friend,et al.  Influence of Nanoscale Phase Separation on the Charge Generation Dynamics and Photovoltaic Performance of Conjugated Polymer Blends: Balancing Charge Generation and Separation , 2007 .

[19]  Y. Zhu,et al.  High Electron Mobility and Ambipolar Charge Transport in Binary Blends of Donor and Acceptor Conjugated Polymers , 2007 .

[20]  Olle Inganäs,et al.  Interference phenomenon determines the color in an organic light emitting diode , 1997 .

[21]  David G. Lidzey,et al.  Correlating structure with fluorescence emission in phase-separated conjugated-polymer blends , 2003, Nature materials.

[22]  K. Landfester,et al.  Phase separation of binary blends in polymer nanoparticles. , 2007, Small.

[23]  P. Blom,et al.  Charge transport in MDMO-PPV:PCNEPV all-polymer solar cells , 2007 .

[24]  Richard A. L. Jones,et al.  An interfacial instability in a transient wetting layer leads to lateral phase separation in thin spin-cast polymer-blend films , 2005, Nature materials.

[25]  P. Blom,et al.  Origin of the efficiency improvement in all-polymer solar cells upon annealing , 2007 .

[26]  M. Thelakkat,et al.  Microphase‐Separated Donor–Acceptor Diblock Copolymers: Influence of HOMO Energy Levels and Morphology on Polymer Solar Cells , 2007 .

[27]  David G Lidzey,et al.  The Impact of Interfacial Mixing on Förster Transfer at Conjugated Polymer Heterojunctions , 2009 .

[28]  R. Friend,et al.  A unified description of current-voltage characteristics in organic and hybrid photovoltaics under low light intensity. , 2008, Nano letters.

[29]  C. McNeill,et al.  X-Ray Microscopy of Photovoltaic Polyfluorene Blends: Relating Nanomorphology to Device Performance , 2007 .

[30]  H. Bässler,et al.  Charge carrier recombination in organic bilayer electroluminescent diodes. I. Theory , 1997 .

[31]  S. Jenekhe,et al.  Electroluminescence of Multicomponent Conjugated Polymers. 2. Photophysics and Enhancement of Electroluminescence from Blends of Polyquinolines , 2002 .

[32]  Alan J. Heeger,et al.  Enhanced electroluminescence from semiconducting polymer blends , 1995 .

[33]  Gijsbertus de With,et al.  Three-dimensional nanoscale organization of bulk heterojunction polymer solar cells. , 2009, Nano letters.

[34]  Jan C Hummelen,et al.  Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer. , 2005, The journal of physical chemistry. A.

[35]  Charles L. Braun,et al.  Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production , 1984 .

[36]  H. Sirringhaus,et al.  Correlation between surface photovoltage and blend morphology in polyfluorene-based photodiodes. , 2005, Nano letters.

[37]  D. Neher,et al.  Efficient Polymer Solar Cells Based on M3EH−PPV , 2005 .

[38]  R. Friend,et al.  Phase Separation in Polyfluorene-Based Conjugated Polymer Blends: Lateral and Vertical Analysis of Blend Spin-Cast Thin Films , 2004 .

[39]  Yang Yang,et al.  Improving the performance of polymer light-emitting diodes using polymer solid solutions , 2001 .

[40]  Charlotte K. Williams,et al.  Charge recombination in organic photovoltaic devices with high open-circuit voltages. , 2008, Journal of the American Chemical Society.

[41]  F. Bates,et al.  Polymer-Polymer Phase Behavior , 1991, Science.

[42]  F. S. Wang,et al.  Highly Efficient Pure‐White‐Light‐Emitting Diodes from a Single Polymer: Polyfluorene with Naphthalimide Moieties , 2006 .

[43]  Richard H Friend,et al.  Probing the morphology and energy landscape of blends of conjugated polymers with sub-10 nm resolution. , 2008, Physical review letters.

[44]  Olle Inganäs,et al.  White light emission from a polymer blend light emitting diode , 1996 .

[45]  J. Loos,et al.  The Art of SPM: Scanning Probe Microscopy in Materials Science , 2005 .

[46]  C. McNeill,et al.  Efficient Polythiophene/Polyfluorene Copolymer Bulk Heterojunction Photovoltaic Devices: Device Physics and Annealing Effects , 2008 .

[47]  Richard H. Friend,et al.  Vertically segregated polymer-blend photovoltaic thin-film structures through surface-mediated solution processing , 2002 .

[48]  D. Ginger,et al.  Time-resolved electrostatic force microscopy of polymer solar cells , 2006, Nature materials.

[49]  F. Krebs,et al.  Low band gap polymers for organic photovoltaics , 2007 .

[50]  N. Greenham,et al.  Monte Carlo modeling of geminate recombination in polymer-polymer photovoltaic devices. , 2008, The Journal of chemical physics.

[51]  Mats Andersson,et al.  Laminated fabrication of polymeric photovoltaic diodes , 1998, Nature.

[52]  C. McNeill,et al.  Evolution of the nanomorphology of photovoltaic polyfluorene blends: sub-100 nm resolution with x-ray spectromicroscopy , 2008, Nanotechnology.

[53]  J. Kroon,et al.  Nanoscale structure of solar cells based on pure conjugated polymer blends , 2007 .

[54]  C. Shu,et al.  Stable and Efficient White Electroluminescent Devices Based on a Single Emitting Layer of Polymer Blends , 2006 .

[55]  David G Lidzey,et al.  Imaging the Fluorescence Decay Lifetime of a Conjugated‐Polymer Blend By Using a Scanning Near‐Field Optical Microscope , 2007 .

[56]  Thomas Kietzke,et al.  A Nanoparticle Approach To Control the Phase Separation in Polyfluorene Photovoltaic Devices , 2004 .

[57]  A. Heeger,et al.  Blue electroluminescent diodes utilizing blends of poly(p-phenylphenylene vinylene) in poly(9-vinylcarbazole) , 1994 .

[58]  Yang Yang,et al.  Efficient polymer light-emitting diodes using conjugated polymer blends , 2002 .

[59]  G. Kothleitner,et al.  Morphology determination of functional poly[2‐methoxy‐5‐(3,7‐dimethyloctyloxy)‐1,4‐phenylenevinylene]/poly[oxa‐1,4‐phenylene‐1,2‐(1‐cyanovinylene)‐2‐methoxy,5‐(3,7‐dimethyloctyloxy)‐1,4‐phenylene‐1,2‐(2‐cyanovinylene)‐1,4‐phenylene] blends as used for all‐polymer solar cells , 2005 .

[60]  R. Friend,et al.  Photovoltaic Performance and Morphology of Polyfluorene Blends: The Influence of Phase Separation Evolution , 2006 .

[61]  G. Mitchell,et al.  The utility of resonant soft x-ray scattering and reflectivity for the nanoscale characterization of polymers , 2009 .

[62]  F. E. Karasz,et al.  Electroluminescence of pure poly(N‐vinylcarbazole) and its blends with a multiblock copolymer , 1994 .

[63]  A. Heeger,et al.  Electroluminescence from blend films of poly(3-hexylthiophene) and poly(N-vinylcarbazole) , 1995 .

[64]  Göran Gustafsson,et al.  White light from an electroluminescent diode made from poly[3(4‐octylphenyl)‐2,2′‐bithiophene] and an oxadiazole derivative , 1994 .

[65]  Richard A. L. Jones,et al.  Polymers at Surfaces and Interfaces , 1999 .

[66]  A. Facchetti,et al.  A high-mobility electron-transporting polymer for printed transistors , 2009, Nature.

[67]  J Kirz,et al.  Chemical contrast in X-ray microscopy and spatially resolved XANES spectroscopy of organic specimens. , 1992, Science.

[68]  W. Huck,et al.  Surface‐Directed Phase Separation of Conjugated Polymer Blends for Efficient Light‐Emitting Diodes , 2008 .

[69]  R. Friend,et al.  Low-temperature control of nanoscale morphology for high performance polymer photovoltaics. , 2008, Nano letters.

[70]  N. Greenham,et al.  Enhanced triplet exciton generation in polyfluorene blends , 2005 .

[71]  Paul A. van Hal,et al.  Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. , 2003, Angewandte Chemie.

[72]  Richard L. Thompson,et al.  Surface segregation and self-stratification in blends of spin-cast polyfluorene derivatives , 2005 .

[73]  F. E. Karasz,et al.  Efficient light emitting diodes from ternary blends of PPV‐based copolymers , 2006 .

[74]  V. Mihailetchi,et al.  Photocurrent generation in polymer-fullerene bulk heterojunctions. , 2004, Physical review letters.

[75]  H. Hörhold,et al.  Photovoltaic properties and exciplex emission of polyphenylenevinylene-based blend solar cells , 2007 .

[76]  P. Blom,et al.  Origin of the Reduced Fill Factor and Photocurrent in MDMO‐PPV:PCNEPV All‐Polymer Solar Cells , 2007 .

[77]  J. Loos,et al.  Nanoscale electrical characterization of semiconducting polymer blends by conductive atomic force microscopy (C-AFM). , 2006, Ultramicroscopy.

[78]  Two-dimensional electron-hole capture in a disordered hopping system , 2003 .

[79]  Shih‐Chang Lin,et al.  Efficient white light emission in conjugated polymer homojunctions , 2004 .

[80]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[81]  S. Meskers,et al.  Exciplex dynamics in a blend of π-conjugated polymers with electron donating and accepting properties : MDMO-PPV and PCNEPV , 2005 .

[82]  F. E. Karasz,et al.  Blue, green, red, and white electroluminescence from multichromophore polymer blends , 2003 .

[83]  Carlos Silva,et al.  Exciton regeneration at polymeric semiconductor heterojunctions. , 2004, Physical review letters.

[84]  J. Holdsworth,et al.  Near-Field Scanning Photocurrent Measurements of Polyfluorene Blend Devices: Directly Correlating Morphology with Current Generation , 2004 .

[85]  J. Kroon,et al.  Efficient polymer:polymer bulk heterojunction solar cells , 2006 .