Substituent Effects on 15N and 17O NMR Chemical Shifts in 4′-Substituted trans-NNO-Azoxybenzenes

15N and 17O NMR spectra have been measured for a series of 4′-substituted trans-NNO-azoxybenzenes (AZOXY) and the obtained substituent chemical shift (SCS) values have been analyzed by means of the LSFE equation. Both the resonance and the polar contribution of substituents are important in determining the 15N(β) SCS and the adjacent terminal 17O SCS in the –Nα=Nβ(O)– function of the AZOXY set. The resonance contributions of the AZOXY sets differ from those of the corresponding PYNO sets in view of a depressed pi-acceptor resonance contribution. That is, the resonance susceptibility ratio in the LSFE equation, ρπ+⁄ρπ−, varies from 1.4 (PYNO) to 2–4 (AZOXY) for both 15N and 17O SCS. The results are compared with the 13C SCS of the corresponding positions in the relevant aromatic side-chain systems, and characterized in terms of repulsive pi-acceptor interaction between the substituents and the side-chain pi-electron systems. The importance of such dual resonance susceptibility has been shown for understand...

[1]  R. D. Topsom Some Theoretical Studies of Electronic Substituent Effects in Organic Chemistry , 1989 .

[2]  Takanori Tanaka,et al.  Crystal structure of di-β-d-fructofuranose 2′, 1:2,3′-dianhydride , 1988 .

[3]  T. Toda,et al.  X-Ray Structure Determination and NMR Characterization of Some Fused Heterocycles with a 1,3,5-Triazine-2,4(1H,3H)-dione Ring. Reaction of 2-Amino-4(3H)-pyrimidinone with Chloroformyl Isocyanate , 1988 .

[4]  S. Misumi,et al.  Dual resonance functionality in pyridine 1-oxides. A double multinuclear NMR approach , 1988 .

[5]  M. Yamauchi,et al.  13C and 1H NMR of arylnitrones. Substituent effects of α-phenyl-N-(p-substituted phenyl)nitrones , 1987 .

[6]  K. Funatsu,et al.  Varying resonance demands in substituent effects. Acetolysis of neophyl p-bromobenzenesulfonates , 1987 .

[7]  N. Goshima,et al.  Identification of 3-hydroxykynurenine, a non-enzymatic cytochrome c reductant in a blowfly, Aldrichina grahami , 1987 .

[8]  M. Yamauchi,et al.  13C and 1H NMR of α-Arylnitrones. Substituent Effects on the α-Position of α-(p-Substituted Phenyl)nitrones , 1986 .

[9]  S. Misumi,et al.  Oxygen-17 NMR spectroscopy: σI dependence for the substituent chemical shifts of 3-substituted pyridine 1-oxides , 1986 .

[10]  S. Misumi,et al.  A 17O NMR study. Substituent chemical shifts of 4-substituted pyridine 1-oxides in DMSO: Importance of dual enhanced resonance contributions with PI-donor and PI-acceptor substituents , 1986 .

[11]  John Skilling,et al.  Maximum entropy reconstruction of spectra containing antiphase peaks , 1985 .

[12]  D. W. Boykin,et al.  17O NMR spectroscopy of 4‐substituted pyridine N‐oxides: Substituent and solvent effects , 1985 .

[13]  G. C. Levy,et al.  Substituent Effects On N-15 and O-17 Chemical-Shifts in Nitrobenzenes - Correlations with Electron-Densities , 2002 .

[14]  D. Craik,et al.  Ab initio MO calculations and 17O NMR at natural abundance of para‐substituted acetophenones , 1983 .

[15]  K. Kano,et al.  Mutual Correlation between Nonaqueous Oxidation-Reduction Potentials and Electronic Spectra, and Its Extension to describe the Substituent Effect on Electronic Spectra by Means of Substituent Constants , 1983 .

[16]  D. Happer,et al.  The application of the Hammett equation to 13C N.M.R. spectrometry. VI. Remote ring effects in azobenzenes and stilbenes , 1983 .

[17]  M. Ōkubo Aryliminodimagnesium reagents. IV. The independent preparation of unsymmetrically substituted azoxyarene isomers and their deoxygenation. , 1983 .

[18]  M. Fujio,et al.  Concerning the optimum scaling of the inductive substituent constants in substituted benzene reactivities. Aspects from the analysis of quinuclidine basicities , 1982 .

[19]  D. Fiat,et al.  OXYGEN-17 NMR STUDIES OF SUBSTITUENT AND HYDROGEN-BONDING EFFECTS IN SUBSTITUTED ACETOPHENONES AND BENZALDEHYDES , 1981 .

[20]  W. Thiel The MNDOC method, a correlated version of the MNDO model , 1981 .

[21]  R. Taft,et al.  Nonadditive carbon-13 nuclear magnetic resonance substituent shifts in 1,4-disubstituted benzenes. Nonlinear resonance and shift-charge ratio effects , 1980 .

[22]  Y. Tsuno,et al.  The Substituent Effect. 15. The LSFE Treatment of Substituent Effects on Basicities of Pyridines , 1980 .

[23]  W. Reynolds,et al.  An investigation into the origins of polar substituent effects upon 19F chemical shifts, using 4-substituted β,β-difluorostyrenes , 1980 .

[24]  Y. Tsuno,et al.  Importance of dual resonance susceptibilities for pi-donor and pi-acceptor substituents regarding a quantitative description of substituent effects. The case of basicity of pyridine N-oxides , 1980 .

[25]  T. Fujii,et al.  The Substituent Effect. 14. The Solvolysis of 6- and 7-Substituted 1-(2-NaphthyI)ethyl Chlorides , 1979 .

[26]  H. Miyazaki,et al.  The electronic spectra and nonaqueous oxidation and reduction potentials of azoxybenzenes, and their mutual correlation. , 1979 .

[27]  R. J. Abraham,et al.  The molecular structure of N-benzylidene-aniline , 1978 .

[28]  W. Klemperer 17O‐NMR Spectroscopy as a Structural Probe , 1978 .

[29]  John D. Roberts,et al.  SUBSTITUENT AND MEDIUM EFFECTS ON NITROGEN-15 SHIELDINGS OF COMPOUNDS WITH * C = N BONDS (IMINES, OXIMES, AND PHENYLHYDRAZONES) , 1978 .

[30]  H. Weber,et al.  Crystal Structure of cis‐(4′‐Methyl‐N,N,O)‐azoxybenzene , 1977 .

[31]  Walter Thiel,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[32]  W. V. Philipsborn,et al.  15N and 13C n.m.r. study of azimines and azoxybenzenes , 1977 .

[33]  P. Mezey,et al.  Ab initio calculations on 4-substituted styrenes: a theoretical model for the separation and evaluation of field and resonance substituent parameters , 1977 .

[34]  D. Happer The application of the Hammett equation to 13C N.M.R. spectroscopy: correlations in the β-nitrostyrenes , 1976 .

[35]  N. Bunce A New Mode of Photorearrangement in the Azoxybenzene Series , 1975 .

[36]  M. Fujio,et al.  The Substituent Effect. VI. Inductive and π-Electronic Effects in the Phenol Hydroxyl Chemical Shifts in DMSO , 1975 .

[37]  M. Fujio,et al.  The Substituent Effect. IV. Proton NMR Chemical Shifts of Phenols , 1972 .

[38]  Leo Radom,et al.  Molecular orbital theory of the electronic structure of organic compounds. XII. Conformations, stabilities, and charge distributions in monosubstituted benzenes , 1972 .

[39]  Y. Chatani,et al.  The crystal structure of p-azoxyanisole , 1970 .

[40]  H. Jaffe,et al.  cis-Azoxybenzenes. I. Synthesis and Structure , 1964 .

[41]  H. Jaffe,et al.  The Basicities of Substituted Azoxybenzenes , 1962 .

[42]  O. Wheeler,et al.  The Absorption Spectra of Aromatic Azo and Related Compounds. I. Azoxybenzenes , 1956 .