High power single-mode delivery of mid-infrared sources through chalcogenide fiber

Mechanically robust and low loss single-mode arsenic sulfide fibers are used to deliver high power mid-infrared sources. Anti-reflection coatings were deposited on the fiber facets, enabling 90% transmission through 20 cm length fibers. 10.3 W was transmitted through an anti-reflection coated fiber at 2053 nm, and uncoated fibers sustained 12 MW/cm2 intensities on the facet without failure. A Cr:ZnSe laser transmitted >1 W at 2520 nm, and a Fe:ZnSe laser transmitted 0.5 W at 4102 nm. These results indicate that by improving the anti-reflection coatings and using a high beam quality mid-infrared source, chalcogenide fibers can reliably deliver 10 W in a single mode, potentially out to 6.5 μm. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement OCIS codes: (060.2270) Fiber characterization; (060.2390) Fiber optics, infrared; (160.2290) Fiber materials; (060.2280) Fiber design and fabrication; (140.3070) Infrared and far-infrared lasers. References and links 1. I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016). 2. D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, A. Zakrevskiy, and S. B. Mirov, “High Power (9.2 W) CW 4.15 μm Fe:ZnSe laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), STh1L.6. 3. V. Fortin, M. Bernier, S. T. Bah, and R. Vallée, “30 W fluoride glass all-fiber laser at 2.94 μm,” Opt. Lett. 40(12), 2882–2885 (2015). 4. F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6 W monolithic fiber laser at 3.55 μm,” Opt. Lett. 42(11), 2054–2057 (2017). 5. P. Figueiredo, M. Suttinger, R. Go, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Progress in high-power continuouswave quantum cascade lasers [Invited],” Appl. Opt. 56(31), H15–H23 (2017). 6. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011). 7. G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015). 8. S. Shabahang, F. A. Tan, J. D. Perlstein, G. Tao, O. Alvarez, F. Chenard, A. Sincore, L. Shah, M. C. Richardson, K. L. Schepler, and A. F. Abouraddy, “Robust multimaterial chalcogenide fibers produced by a hybrid fiberfabrication process,” Opt. Mater. Express 7(7), 2336–2345 (2017). 9. S. Sato, K. Igarashi, M. Taniwaki, K. Tanimoto, and Y. Kikuchi, “Multihundred‐watt CO laser power delivery through chalcogenide glass fibers,” Appl. Phys. Lett. 62(7), 669–671 (1993). 10. E. Papagiakoumou, D. N. Papadopoulos, and A. A. Serafetinides, “Pulsed infrared radiation transmission through chalcogenide glass fibers,” Opt. Commun. 276(1), 80–86 (2007). 11. L. E. Busse, J. A. Moon, J. S. Sanghera, and I. D. Aggarwal, “Mid-IR high-power transmission through chalcogenide fibers: current results and future challenges,” Proc. SPIE 2966, 553 (1997). 12. F. Chenard, O. Alvarez, and H. Moawad, “MIR chalcogenide fiber and devices,” Proc. SPIE 9317, 93170B (2015). Vol. 26, No. 6 | 19 Mar 2018 | OPTICS EXPRESS 7313 #314558 https://doi.org/10.1364/OE.26.007313 Journal © 2018 Received 1 Dec 2017; revised 28 Feb 2018; accepted 1 Mar 2018; published 13 Mar 2018 13. A. Sincore, N. Bodnar, J. Bradford, A. Abdulfattah, L. Shah, and M. C. Richardson, “SBS Threshold Dependence on Pulse Duration in a 2053 nm Single-Mode Fiber Amplifier,” J. Lightwave Technol. 35(18), 4000–4003 (2017). 14. P. A. Berry and K. L. Schepler, “High-power, widely-tunable Cr2+:ZnSe master oscillator power amplifier systems,” Opt. Express 18(14), 15062–15072 (2010). 15. R. W. Stites, S. A. McDaniel, J. O. Barnes, D. M. Krein, J. H. Goldsmith, S. Guha, and G. Cook, “Hot isostatic pressing of transition metal ions into chalcogenide laser host crystals,” Opt. Mater. Express 6(10), 3339–3353 (2016). 16. S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015). 17. W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Crystal. Sol. 431, 8–15 (2016). 18. G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mater. Rapid Commun. 3, 669–671 (2009). 19. Engineering Plastic Products – Stock Shapes for Machining (Quadrant Engineering Plastic Products, 1996). 20. D. C. Miller, R. R. Foster, S.-H. Jen, J. A. Bertrand, S. J. Cunningham, A. S. Morris, Y.-C. Lee, S. M. George, and M. L. Dunn, “Thermo-mechanical properties of alumina films created using the atomic layer deposition technique,” Sens. Actuators A Phys. 164(1-2), 58–67 (2010). 21. J. Proost and F. Spaepen, “Evolution of the growth stress, stiffness, and microstructure of alumina thin films during vapor deposition,” J. Appl. Phys. 91(1), 204–216 (2002). 22. F. W. Glaze, D. H. Blackburn, J. S. Osmalov, D. Hubbard, M. H. Black, D. H. B. Francis, and M. H. Black, “Properties of arsenic sulfide glass,” J. Res. Nat. Bureau Stds. 59(2), 83–92 (1957). 23. J. Sanghera, C. Florea, L. Busse, B. Shaw, F. Miklos, and I. Aggarwal, “Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18(25), 26760–26768 (2010).

[1]  Joshua Bradford,et al.  SBS Threshold Dependence on Pulse Duration in a 2053 nm Single-Mode Fiber Amplifier , 2017, Journal of Lightwave Technology.

[2]  Eirini Papagiakoumou,et al.  Pulsed infrared radiation transmission through chalcogenide glass fibers , 2007 .

[3]  Manabu Taniwaki,et al.  Multihundred‐watt CO laser power delivery through chalcogenide glass fibers , 1992 .

[4]  Sean A. McDaniel,et al.  Hot isostatic pressing of transition metal ions into chalcogenide laser host crystals , 2016 .

[5]  Brandon Shaw,et al.  Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces. , 2010, Optics express.

[6]  K. Schepler,et al.  High-power, widely-tunable Cr(2+):ZnSemaster oscillator power amplifier systems. , 2010, Optics express.

[7]  Manijeh Razeghi,et al.  Room temperature quantum cascade lasers with 27% wall plug efficiency , 2011 .

[8]  Martin Richardson,et al.  Robust multimaterial chalcogenide fibers produced by a hybrid fiber-fabrication process , 2017 .

[9]  Arthur S. Morris,et al.  Thermo-Mechanical Properties of Alumina Films Created Using the Atomic Layer Deposition Technique , 2010 .

[10]  Jasbinder S. Sanghera,et al.  Mid-IR high-power transmission through chalcogenide fibers: current results and future challenges , 1997, Laser Damage.

[11]  Leslie Brandon Shaw,et al.  Recent progress in chalcogenide fiber technology at NRL , 2016 .

[12]  D. Hubbard,et al.  Properties of arsenic sulfide glass , 1957 .

[13]  Arkadiy Lyakh,et al.  Progress in high-power continuous-wave quantum cascade lasers [Invited]. , 2017, Applied optics.

[14]  Joris Proost,et al.  Evolution of the growth stress, stiffness, and microstructure of alumina thin films during vapor deposition , 2002 .

[15]  Mike Mirov,et al.  Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides , 2015, IEEE Journal of Selected Topics in Quantum Electronics.