Image Processing and Machine Learning Techniques for the Segmentation of cDNA

[1]  Radhakrishnan Nagarajan,et al.  Intensity-based segmentation of microarray images , 2003, IEEE Transactions on Medical Imaging.

[2]  J. Lieb,et al.  ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. , 2004, Genomics.

[3]  Carlos Caldas,et al.  Microarray segmentation methods significantly influence data precision. , 2004, Nucleic acids research.

[4]  Nikolas P. Galatsanos,et al.  Mixture model analysis of DNA microarray images , 2005, IEEE Transactions on Medical Imaging.

[5]  Ajay N. Jain,et al.  Fully automatic quantification of microarray image data. , 2002, Genome research.

[6]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[7]  Gary Moran,et al.  Comparative genomics using Candida albicans DNA microarrays reveals absence and divergence of virulence-associated genes in Candida dubliniensis. , 2004, Microbiology.

[8]  Jörg Rahnenführer,et al.  Unsupervised technique for robust target separation and analysis of DNA microarray spots through adaptive pixel clustering , 2002, Bioinform..

[9]  Ash A. Alizadeh,et al.  Genome-wide analysis of DNA copy number variation in breast cancer using DNA microarrays , 1999, Nature Genetics.

[10]  X. Wang,et al.  Quantitative quality control in microarray image processing and data acquisition. , 2001, Nucleic acids research.

[11]  H. B. Mann,et al.  On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other , 1947 .

[12]  Ash A. Alizadeh,et al.  Genome-wide analysis of DNA copy-number changes using cDNA microarrays , 1999, Nature Genetics.

[13]  P. Brown,et al.  DNA arrays for analysis of gene expression. , 1999, Methods in enzymology.

[14]  David Botstein,et al.  The Stanford Microarray Database: data access and quality assessment tools , 2003, Nucleic Acids Res..

[15]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[16]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Jörg Rahnenführer,et al.  Hybrid clustering for microarray image analysis combining intensity and shape features , 2004, BMC Bioinformatics.

[18]  Jos B. T. M. Roerdink,et al.  The Watershed Transform: Definitions, Algorithms and Parallelization Strategies , 2000, Fundam. Informaticae.