NON-UNIQUE GAMES OVER COMPACT GROUPS AND ORIENTATION ESTIMATION IN CRYO-EM

Let $\mathcal{G}$ be a compact group and let $f_{ij} \in L^2(\mathcal{G})$. We define the Non-Unique Games (NUG) problem as finding $g_1,\dots,g_n \in \mathcal{G}$ to minimize $\sum_{i,j=1}^n f_{ij} \left( g_i g_j^{-1}\right)$. We devise a relaxation of the NUG problem to a semidefinite program (SDP) by taking the Fourier transform of $f_{ij}$ over $\mathcal{G}$, which can then be solved efficiently. The NUG framework can be seen as a generalization of the little Grothendieck problem over the orthogonal group and the Unique Games problem and includes many practically relevant problems, such as the maximum likelihood estimator} to registering bandlimited functions over the unit sphere in $d$-dimensions and orientation estimation in cryo-Electron Microscopy.

[1]  Moses Charikar,et al.  Near-optimal algorithms for unique games , 2006, STOC '06.

[2]  Amit Singer,et al.  Multireference alignment using semidefinite programming , 2013, ITCS.

[3]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[4]  Amit Singer,et al.  Approximating the little Grothendieck problem over the orthogonal and unitary groups , 2013, Mathematical Programming.

[5]  Yoel Shkolnisky,et al.  Detecting consistent common lines in cryo-EM by voting. , 2010, Journal of structural biology.

[6]  Zhizhen Zhao,et al.  Mahalanobis distance for class averaging of cryo-EM images , 2016, 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017).

[7]  B. Dumitrescu Positive Trigonometric Polynomials and Signal Processing Applications , 2007 .

[8]  Yoel Shkolnisky,et al.  Viewing Direction Estimation in Cryo-EM Using Synchronization , 2012, SIAM J. Imaging Sci..

[9]  Subhash Khot On the power of unique 2-prover 1-round games , 2002, STOC '02.

[10]  Hongdong Li,et al.  Rotation Averaging , 2013, International Journal of Computer Vision.

[11]  Amit Singer,et al.  A Cheeger Inequality for the Graph Connection Laplacian , 2012, SIAM J. Matrix Anal. Appl..

[12]  Pablo A. Parrilo,et al.  Semidefinite Descriptions of the Convex Hull of Rotation Matrices , 2014, SIAM J. Optim..

[13]  Leonidas J. Guibas,et al.  Near-Optimal Joint Object Matching via Convex Relaxation , 2014, ICML.

[14]  A. Singer Angular Synchronization by Eigenvectors and Semidefinite Programming. , 2009, Applied and computational harmonic analysis.

[15]  Eiichi Bannai,et al.  A survey on spherical designs and algebraic combinatorics on spheres , 2009, Eur. J. Comb..

[16]  Y. Nesterov Semidefinite relaxation and nonconvex quadratic optimization , 1998 .

[17]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[18]  Kim-Chuan Toh,et al.  A Convergent 3-Block SemiProximal Alternating Direction Method of Multipliers for Conic Programming with 4-Type Constraints , 2014, SIAM J. Optim..

[19]  B E Saleh,et al.  Transformation of image-signal-dependent noise into image-signal-independent noise. , 1981, Optics letters.

[20]  Assaf Naor,et al.  Efficient rounding for the noncommutative grothendieck inequality , 2012, STOC '13.

[21]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[22]  Neil A. Farrow,et al.  A posteriori determination of relative projection directions of arbitrarily oriented macromolecules , 1992 .

[23]  David J. Kriegman,et al.  Structure and View Estimation for Tomographic Reconstruction: A Bayesian Approach , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[24]  Amit Singer,et al.  Open Problem: Tightness of maximum likelihood semidefinite relaxations , 2014, COLT.

[25]  Roy R. Lederman,et al.  A Representation Theory Perspective on Simultaneous Alignment and Classification , 2016, Applied and Computational Harmonic Analysis.

[26]  Zhizhen Zhao,et al.  Rotationally Invariant Image Representation for Viewing Direction Classification in Cryo-EM , 2013, Journal of structural biology.

[27]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[28]  Tomás Pajdla,et al.  Robust Rotation and Translation Estimation in Multiview Reconstruction , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  M. van Heel,et al.  Fourier shell correlation threshold criteria. , 2005, Journal of structural biology.

[30]  Emmanuel Abbe,et al.  Exact Recovery in the Stochastic Block Model , 2014, IEEE Transactions on Information Theory.

[31]  Yoel Shkolnisky,et al.  Three-Dimensional Structure Determination from Common Lines in Cryo-EM by Eigenvectors and Semidefinite Programming , 2011, SIAM J. Imaging Sci..

[32]  D. Rockmore,et al.  FFTs on the Rotation Group , 2008 .

[33]  Zhizhen Zhao,et al.  Viewing Angle Classification of Cryo-Electron Microscopy Images Using Eigenvectors , 2011, SIAM J. Imaging Sci..

[34]  J. Frank,et al.  A common-lines based method for determining orientations for N > 3 particle projections simultaneously. , 1996, Ultramicroscopy.

[35]  Zhizhen Zhao,et al.  Fast Steerable Principal Component Analysis , 2014, IEEE Transactions on Computational Imaging.

[36]  Leonidas J. Guibas,et al.  Consistent Shape Maps via Semidefinite Programming , 2013, SGP '13.

[37]  Z. Kam The reconstruction of structure from electron micrographs of randomly oriented particles. , 1980, Journal of theoretical biology.

[38]  Noga Alon,et al.  Approximating the cut-norm via Grothendieck's inequality , 2004, STOC '04.

[39]  S. Scheres,et al.  How cryo-EM is revolutionizing structural biology. , 2015, Trends in biochemical sciences.

[40]  Liguo Wang,et al.  Cryo-EM and single particles. , 2006, Physiology.

[41]  A. Goncharov,et al.  Determination of the spatial orientation of arbitrarily arranged identical particles of unknown structure from their projections , 1986 .

[42]  Jon Cohen,et al.  Structural biology. Is high-tech view of HIV too good to be true? , 2013, Science.

[43]  Amit Singer,et al.  Decoding Binary Node Labels from Censored Edge Measurements: Phase Transition and Efficient Recovery , 2014, IEEE Transactions on Network Science and Engineering.

[44]  R. Askey Orthogonal Polynomials and Special Functions , 1975 .

[45]  Amit Singer,et al.  Tightness of the maximum likelihood semidefinite relaxation for angular synchronization , 2014, Math. Program..

[46]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[47]  Mihai Cucuringu,et al.  Synchronization over Z2 and community detection in signed multiplex networks with constraints , 2015, J. Complex Networks.

[48]  M. van Heel Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction. , 1987, Ultramicroscopy.

[49]  Steven M. LaValle,et al.  Generating Uniform Incremental Grids on SO(3) Using the Hopf Fibration , 2010, WAFR.

[50]  Subhash Khot,et al.  On the Unique Games Conjecture (Invited Survey) , 2005, 2010 IEEE 25th Annual Conference on Computational Complexity.

[51]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.