The use and abuse of heme in apicomplexan parasites.

SIGNIFICANCE Heme is an essential prosthetic group for most life on Earth. It functions in numerous cellular redox reactions, including in antioxidant defenses and at several stages of the electron transport chain in prokaryotes and eukaryotic mitochondria. Heme also functions as a sensor and transport molecule for gases such as oxygen. Heme is a complex organic molecule and can only be synthesized through a multienzyme pathway from simpler precursors. Most free-living organisms synthesize their own heme by a broadly conserved metabolic pathway. Parasites are adept at scavenging molecules from their hosts, and heme is no exception. RECENT ADVANCES In this review we examine recent advances in understanding heme usage and acquisition in Apicomplexa, a group of parasites that include the causative agents of malaria, toxoplasmosis, and several major parasites of livestock. CRITICAL ISSUES Heme is critical to the survival of Apicomplexa, although the functions of heme in these organisms remain poorly understood. Some Apicomplexa likely scavenge heme from their host organisms, while others retain the ability to synthesize heme. Surprisingly, some Apicomplexa may be able to both synthesize and scavenge heme. Several Apicomplexa live in intracellular environments that contain high levels of heme. Since heme is toxic at high concentrations, parasites must carefully regulate intracellular heme levels and develop mechanisms to detoxify excess heme. Indeed, drugs interfering with heme detoxification serve as major antimalarials. FUTURE DIRECTIONS Understanding heme requirements and regulation in apicomplexan parasites promises to reveal multiple targets for much-needed therapeutic intervention against these parasites.

[1]  J. Hittner,et al.  Severe Malarial Anemia: Innate Immunity and Pathogenesis , 2011, International journal of biological sciences.

[2]  M. Mather,et al.  ATP Synthase Complex of Plasmodium falciparum , 2011, The Journal of Biological Chemistry.

[3]  U. Groß,et al.  Two internal type II NADH dehydrogenases of Toxoplasma gondii are both required for optimal tachyzoite growth , 2011, Molecular microbiology.

[4]  D. Roos,et al.  The search for the missing link: a relic plastid in Perkinsus? , 2011, International journal for parasitology.

[5]  R. Amewu,et al.  Comparison of the reactivity of antimalarial 1,2,4,5-tetraoxanes with 1,2,4-trioxolanes in the presence of ferrous iron salts, heme, and ferrous iron salts/phosphatidylcholine. , 2011, Journal of medicinal chemistry.

[6]  P. Keeling,et al.  Tetrapyrrole Synthesis of Photosynthetic Chromerids Is Likely Homologous to the Unusual Pathway of Apicomplexan Parasites[C][W] , 2011, Plant Cell.

[7]  Peter G. Schultz,et al.  A Chemical Genomic Analysis of Decoquinate, a Plasmodium falciparum Cytochrome b Inhibitor , 2011, ACS chemical biology.

[8]  B. Striepen,et al.  What Do Human Parasites Do with a Chloroplast Anyway? , 2011, PLoS biology.

[9]  Joseph L. DeRisi,et al.  Chemical Rescue of Malaria Parasites Lacking an Apicoplast Defines Organelle Function in Blood-Stage Plasmodium falciparum , 2011, PLoS biology.

[10]  K. Matuschewski,et al.  Arrested Oocyst Maturation in Plasmodium Parasites Lacking Type II NADH:Ubiquinone Dehydrogenase* , 2011, The Journal of Biological Chemistry.

[11]  Leann Tilley,et al.  Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion , 2011, Proceedings of the National Academy of Sciences.

[12]  H. Bonkovsky,et al.  Lon Peptidase 1 (LONP1)-dependent Breakdown of Mitochondrial 5-Aminolevulinic Acid Synthase Protein by Heme in Human Liver Cells* , 2011, The Journal of Biological Chemistry.

[13]  S. Dalal,et al.  Distribution and Biochemical Properties of an M1-family Aminopeptidase in Plasmodium falciparum Indicate a Role in Vacuolar Hemoglobin Catabolism* , 2011, The Journal of Biological Chemistry.

[14]  J. Chory,et al.  Heme Synthesis by Plastid Ferrochelatase I Regulates Nuclear Gene Expression in Plants , 2011, Current Biology.

[15]  S. Yoshikawa,et al.  Proton-pumping mechanism of cytochrome C oxidase. , 2011, Annual review of biophysics.

[16]  T. Sanderson,et al.  The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis. , 2011, Mitochondrion.

[17]  Robert Eugene Blankenship,et al.  Evolution of photosynthesis. , 2011, Annual review of plant biology.

[18]  M. Oborník,et al.  Sequence Evidence for the Presence of Two Tetrapyrrole Pathways in Euglena gracilis , 2011, Genome biology and evolution.

[19]  Angelina Iniguez,et al.  Discovery and characterization of a unique mycobacterial heme acquisition system , 2011, Proceedings of the National Academy of Sciences.

[20]  J. M. Pérez-Victoria,et al.  A new ATP‐binding cassette protein is involved in intracellular haem trafficking in Leishmania , 2011, Molecular microbiology.

[21]  W. Soetaert,et al.  The role of cytochrome P450 monooxygenases in microbial fatty acid metabolism , 2011, The FEBS journal.

[22]  D. Jahn,et al.  A Novel Pathway for the Biosynthesis of Heme in Archaea: Genome-Based Bioinformatic Predictions and Experimental Evidence , 2010, Archaea.

[23]  S. Rahlfs,et al.  Compartmentation of Redox Metabolism in Malaria Parasites , 2010, PLoS pathogens.

[24]  F. L. D’Alexandri,et al.  Intraerythrocytic stages of Plasmodium falciparum biosynthesize menaquinone , 2010, FEBS letters.

[25]  T. Egan,et al.  The neutral lipid composition present in the digestive vacuole of Plasmodium falciparum concentrates heme and mediates β-hematin formation with an unusually low activation energy. , 2010, Biochemistry.

[26]  P. Rangarajan,et al.  Protoporphyrinogen IX oxidase from Plasmodium falciparum is anaerobic and is localized to the mitochondrion. , 2010, Molecular and biochemical parasitology.

[27]  M. Olivier,et al.  Innate inflammatory response to the malarial pigment hemozoin. , 2010, Microbes and infection.

[28]  E. Nigg,et al.  The Transforming Parasite Theileria Co-opts Host Cell Mitotic and Central Spindles to Persist in Continuously Dividing Cells , 2010, PLoS biology.

[29]  B. Meunier,et al.  Heme as trigger and target for trioxane-containing antimalarial drugs. , 2010, Accounts of chemical research.

[30]  Eric P. Skaar,et al.  Overcoming the Heme Paradox: Heme Toxicity and Tolerance in Bacterial Pathogens , 2010, Infection and Immunity.

[31]  M. Fontes,et al.  In vivo uptake of a haem analogue Zn protoporphyrin IX by the human malaria parasite P. falciparum‐infected red blood cells , 2010, Cell biology international.

[32]  C. Obinger,et al.  Evolution of structure and function of Class I peroxidases. , 2010, Archives of biochemistry and biophysics.

[33]  B. Paw,et al.  Ferrochelatase forms an oligomeric complex with mitoferrin-1 and Abcb10 for erythroid heme biosynthesis. , 2010, Blood.

[34]  B. Paw,et al.  Iron and Porphyrin Trafficking in Heme Biogenesis* , 2010, The Journal of Biological Chemistry.

[35]  A. Horák,et al.  A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids , 2010, Proceedings of the National Academy of Sciences.

[36]  P. Rangarajan,et al.  Characterization of coproporphyrinogen III oxidase in Plasmodium falciparum cytosol. , 2010, Parasitology international.

[37]  D. Roos,et al.  Plastid-associated Porphobilinogen Synthase from Toxoplasma gondii , 2010, The Journal of Biological Chemistry.

[38]  Y. Li,et al.  Artemisinin Directly Targets Malarial Mitochondria through Its Specific Mitochondrial Activation , 2010, PloS one.

[39]  J. Lukeš,et al.  Evolution of the haem synthetic pathway in kinetoplastid flagellates: an essential pathway that is not essential after all? , 2010, International journal for parasitology.

[40]  P. Rangarajan,et al.  Mitochondrial localization of functional ferrochelatase from Plasmodium falciparum. , 2009, Molecular and biochemical parasitology.

[41]  T. Mogi,et al.  Identification of mitochondrial Complex II subunits SDH3 and SDH4 and ATP synthase subunits a and b in Plasmodium spp. , 2009, Mitochondrion.

[42]  G. Loughran,et al.  Heme-binding Protein HRG-1 Is Induced by Insulin-like Growth Factor I and Associates with the Vacuolar H+-ATPase to Control Endosomal pH and Receptor Trafficking* , 2009, The Journal of Biological Chemistry.

[43]  N. Chandra,et al.  Localisation of Plasmodium falciparum uroporphyrinogen III decarboxylase of the heme-biosynthetic pathway in the apicoplast and characterisation of its catalytic properties. , 2009, International journal for parasitology.

[44]  A. O. Lau An overview of the Babesia, Plasmodium and Theileria genomes: a comparative perspective. , 2009, Molecular and biochemical parasitology.

[45]  Ken Okada The novel heme oxygenase‐like protein from Plasmodium falciparum converts heme to bilirubin IXα in the apicoplast , 2009, FEBS letters.

[46]  A. Vaughan,et al.  Type II fatty acid synthesis is essential only for malaria parasite late liver stage development , 2008, Cellular microbiology.

[47]  Joel S. Freundlich,et al.  The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. , 2008, Cell host & microbe.

[48]  M. J. Terry,et al.  Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation , 2008, Proceedings of the National Academy of Sciences.

[49]  Christian Obinger,et al.  Evolution of catalases from bacteria to humans. , 2008, Antioxidants & redox signaling.

[50]  B. Paw,et al.  Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins , 2008, Nature.

[51]  S. Moestrup,et al.  A Haptoglobin-Hemoglobin Receptor Conveys Innate Immunity to Trypanosoma brucei in Humans , 2008, Science.

[52]  D. Kramer,et al.  A drug-selected Plasmodium falciparum lacking the need for conventional electron transport. , 2008, Molecular and biochemical parasitology.

[53]  O. Hoegh‐Guldberg,et al.  A photosynthetic alveolate closely related to apicomplexan parasites , 2008, Nature.

[54]  L. Moens,et al.  Diversity of Globin Function: Enzymatic, Transport, Storage, and Sensing* , 2008, Journal of Biological Chemistry.

[55]  J. Andersen,et al.  HDP—A Novel Heme Detoxification Protein from the Malaria Parasite , 2008, PLoS pathogens.

[56]  A. Tatem,et al.  The Limits and Intensity of Plasmodium falciparum Transmission : Implications for Malaria Control and Elimination Worldwide , 2007 .

[57]  P. Rangarajan,et al.  Unique Properties of Plasmodium falciparum Porphobilinogen Deaminase* , 2008, Journal of Biological Chemistry.

[58]  Dennis K. Taylor,et al.  Artemisinin and a Series of Novel Endoperoxide Antimalarials Exert Early Effects on Digestive Vacuole Morphology , 2007, Antimicrobial Agents and Chemotherapy.

[59]  Govindarajan Padmanaban,et al.  An alternative model for heme biosynthesis in the malarial parasite. , 2007, Trends in biochemical sciences.

[60]  J. Schuetz,et al.  The role of transporters in cellular heme and porphyrin homeostasis. , 2007, Pharmacology & therapeutics.

[61]  R. Tanaka,et al.  Tetrapyrrole biosynthesis in higher plants. , 2007, Annual review of plant biology.

[62]  D. Salmon,et al.  Heme requirement and intracellular trafficking in Trypanosoma cruzi epimastigotes. , 2007, Biochemical and biophysical research communications.

[63]  Joanne M. Morrisey,et al.  Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum , 2007, Nature.

[64]  John M. Pisciotta,et al.  The role of neutral lipid nanospheres in Plasmodium falciparum haem crystallization. , 2007, The Biochemical journal.

[65]  M. Akabas,et al.  Identification of an Intestinal Folate Transporter and the Molecular Basis for Hereditary Folate Malabsorption , 2006, Cell.

[66]  M. Molyneux,et al.  Suppression of erythropoiesis in malarial anemia is associated with hemozoin in vitro and in vivo. , 2006, Blood.

[67]  Daxi Sun,et al.  Identification of a mammalian mitochondrial porphyrin transporter , 2006, Nature.

[68]  K. Ligon,et al.  p16INK4a induces an age-dependent decline in islet regenerative potential , 2006, Nature.

[69]  E. Hegg,et al.  Evaluating the roles of the heme a side chains in cytochrome c oxidase using designed heme proteins. , 2006, Biochemistry.

[70]  J. Golenser,et al.  pfmdr2 Confers Heavy Metal Resistance to Plasmodium falciparum* , 2006, Journal of Biological Chemistry.

[71]  G. McFadden,et al.  Metabolic maps and functions of the Plasmodium mitochondrion. , 2006, FEMS microbiology reviews.

[72]  Jun Liu,et al.  Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[73]  G. Biagini,et al.  Functional Characterization and Target Validation of Alternative Complex I of Plasmodium falciparum Mitochondria , 2006, Antimicrobial Agents and Chemotherapy.

[74]  U. Ryde,et al.  Structures of the high-valent metal-ion haem-oxygen intermediates in peroxidases, oxygenases and catalases. , 2006, Journal of inorganic biochemistry.

[75]  M. Maines,et al.  30 some years of heme oxygenase: from a "molecular wrecking ball" to a "mesmerizing" trigger of cellular events. , 2005, Biochemical and biophysical research communications.

[76]  C. Clayton,et al.  The antioxidant systems in Toxoplasma gondii and the role of cytosolic catalase in defence against oxidative injury , 2005, Molecular microbiology.

[77]  C. Vulpe,et al.  Identification of an Intestinal Heme Transporter , 2005, Cell.

[78]  Alison G. Smith,et al.  Regulation of tetrapyrrole biosynthesis in higher plants , 2005 .

[79]  Sanjay Kumar,et al.  Free heme toxicity and its detoxification systems in human. , 2005, Toxicology letters.

[80]  Christopher J. Tonkin,et al.  Development of the endoplasmic reticulum, mitochondrion and apicoplast during the asexual life cycle of Plasmodium falciparum , 2005, Molecular microbiology.

[81]  Arthur M Lesk,et al.  Structural divergence and distant relationships in proteins: evolution of the globins. , 2005, Current opinion in structural biology.

[82]  I. Hamza,et al.  Lack of heme synthesis in a free-living eukaryote. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[83]  C. Moraes,et al.  Defects in the biosynthesis of mitochondrial heme c and heme a in yeast and mammals. , 2004, Biochimica et biophysica acta.

[84]  I. Gluzman,et al.  A Plasmodium falciparum Dipeptidyl Aminopeptidase I Participates in Vacuolar Hemoglobin Degradation* , 2004, Journal of Biological Chemistry.

[85]  P. O’Neill,et al.  A Medicinal Chemistry Perspective on Artemisinin and Related Endoperoxides , 2004 .

[86]  M. Alam,et al.  Ancestral hemoglobins in Archaea. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Ping Xu,et al.  Complete Genome Sequence of the Apicomplexan, Cryptosporidium parvum , 2004, Science.

[88]  F. Roberts,et al.  Evidence for mitochondrial-derived alternative oxidase in the apicomplexan parasite Cryptosporidium parvum: a potential anti-microbial agent target. , 2004, International journal for parasitology.

[89]  M. Mewies,et al.  Defining substrate specificity and catalytic mechanism in ascorbate peroxidase. , 2004, Biochemical Society symposium.

[90]  R. Wilson,et al.  Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium falciparum. , 2004, Protist.

[91]  Christopher J. Tonkin,et al.  Tropical infectious diseases: Metabolic maps and functions of the Plasmodium falciparum apicoplast , 2004, Nature Reviews Microbiology.

[92]  N. Chandra,et al.  Delta-aminolevulinic acid dehydratase from Plasmodium falciparum: indigenous versus imported. , 2004, The Journal of biological chemistry.

[93]  A. Crofts,et al.  The cytochrome bc1 complex: function in the context of structure. , 2004, Annual review of physiology.

[94]  K. Nagai,et al.  Direct evidence for cyanide-insensitive quinol oxidase (alternative oxidase) in apicomplexan parasite Cryptosporidium parvum: phylogenetic and therapeutic implications. , 2004, Biochemical and biophysical research communications.

[95]  Shuhong Luo,et al.  Oxidative Phosphorylation and Rotenone-insensitive Malate- and NADH-Quinone Oxidoreductases in Plasmodium yoelii yoelii Mitochondria in Situ* , 2004, Journal of Biological Chemistry.

[96]  M. J. LaGier,et al.  Mitochondrial-type iron-sulfur cluster biosynthesis genes (IscS and IscU) in the apicomplexan Cryptosporidium parvum. , 2003, Microbiology.

[97]  C. Clayton,et al.  The antioxidant systems in Toxoplasma gondii and the role of cytosolic catalase in defence against oxidative injury , 2003 .

[98]  M. Alam,et al.  The diversity of globin‐coupled sensors , 2003, FEBS letters.

[99]  J. Keithly,et al.  Cryptosporidium parvum Cpn60 targets a relict organelle , 2003, Current Genetics.

[100]  S. Meshnick,et al.  Molecular Basis for Atovaquone Binding to the Cytochrome bc1 Complex* , 2003, Journal of Biological Chemistry.

[101]  J. Schenkman,et al.  The many roles of cytochrome b5. , 2003, Pharmacology & therapeutics.

[102]  James W. A. Allen,et al.  C-type cytochromes: diverse structures and biogenesis systems pose evolutionary problems. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[103]  J. Ecker,et al.  Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX , 2003, Nature.

[104]  S. Varadharajan,et al.  Involvement of delta-aminolaevulinate synthase encoded by the parasite gene in de novo haem synthesis by Plasmodium falciparum. , 2002, The Biochemical journal.

[105]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[106]  D. Sullivan,et al.  trans Expression of a Plasmodium falciparum Histidine-rich Protein II (HRPII) Reveals Sorting of Soluble Proteins in the Periphery of the Host Erythrocyte and Disrupts Transport to the Malarial Food Vacuole* , 2002, The Journal of Biological Chemistry.

[107]  H. Panek,et al.  A whole genome view of prokaryotic haem biosynthesis. , 2002, Microbiology.

[108]  T. Egan,et al.  Fate of haem iron in the malaria parasite Plasmodium falciparum. , 2002, The Biochemical journal.

[109]  N. Pfanner,et al.  Powering mitochondrial protein import , 2002, Nature Structural Biology.

[110]  Robert Aggeler,et al.  Mechanism of the F(1)F(0)-type ATP synthase, a biological rotary motor. , 2002, Trends in biochemical sciences.

[111]  Alison G. Smith,et al.  Measurement of ferrochelatase activity using a novel assay suggests that plastids are the major site of haem biosynthesis in both photosynthetic and non-photosynthetic cells of pea (Pisum sativum L.). , 2002, The Biochemical journal.

[112]  R. Wilson,et al.  The genome of Plasmodium falciparum encodes an active δ-aminolevulinic acid dehydratase , 2002, Current Genetics.

[113]  J. Rose,et al.  Ferrochelatase at the millennium: structures, mechanisms and [2Fe-2S] clusters , 2000, Cellular and Molecular Life Sciences CMLS.

[114]  S. Dhanasekaran,et al.  Import of host δ-aminolevulinate dehydratase into the malarial parasite: Identification of a new drug target , 2000, Nature Medicine.

[115]  Silvia N. J. Moreno,et al.  Oxidative Phosphorylation, Ca2+ Transport, and Fatty Acid-induced Uncoupling in Malaria Parasites Mitochondria* , 2000, The Journal of Biological Chemistry.

[116]  Peter W. Stephens,et al.  The structure of malaria pigment β-haematin , 2000, Nature.

[117]  D. Goldberg,et al.  Identification and Characterization of Falcilysin, a Metallopeptidase Involved in Hemoglobin Catabolism within the Malaria Parasite Plasmodium falciparum* , 1999, The Journal of Biological Chemistry.

[118]  L. Bannister,et al.  The plastid in Plasmodium falciparum asexual blood stages: a three-dimensional ultrastructural analysis. , 1999, Protist.

[119]  H. Lichtenthaler,et al.  Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. , 1999, Science.

[120]  Joanne M. Morrisey,et al.  Resistance mutations reveal the atovaquone‐binding domain of cytochrome b in malaria parasites , 1999, Molecular microbiology.

[121]  A E Vercesi,et al.  Respiration and Oxidative Phosphorylation in the Apicomplexan Parasite Toxoplasma gondii * , 1998, The Journal of Biological Chemistry.

[122]  B. Goldman,et al.  Mmicular mechanisms of cytochrome c biogenesis: three distinct systems , 1998, Molecular microbiology.

[123]  R. C. Lin,et al.  Estrogen Up-regulates Apolipoprotein E (ApoE) Gene Expression by Increasing ApoE mRNA in the Translating Pool via the Estrogen Receptor α-Mediated Pathway* , 1997, The Journal of Biological Chemistry.

[124]  T. Egan,et al.  Thermodynamic factors controlling the interaction of quinoline antimalarial drugs with ferriprotoporphyrin IX. , 1997, Journal of inorganic biochemistry.

[125]  Z. Bonday,et al.  Heme Biosynthesis by the Malarial Parasite , 1997, The Journal of Biological Chemistry.

[126]  E. Kruse,et al.  Cloning and characterization of a plastidal and a mitochondrial isoform of tobacco protoporphyrinogen IX oxidase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[127]  J. Palmer,et al.  A Plastid of Probable Green Algal Origin in Apicomplexan Parasites , 1997, Science.

[128]  A. Vaidya,et al.  Atovaquone, a Broad Spectrum Antiparasitic Drug, Collapses Mitochondrial Membrane Potential in a Malarial Parasite* , 1997, The Journal of Biological Chemistry.

[129]  S. Ferguson-Miller,et al.  Heme/Copper Terminal Oxidases. , 1996, Chemical reviews.

[130]  D. Sullivan,et al.  On the molecular mechanism of chloroquine's antimalarial action. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[131]  M. Strath,et al.  Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. , 1996, Journal of molecular biology.

[132]  André Smith,et al.  Erratum to: Characterization of the δ-aminolevulinate synthase gene homologue in P. falciparum [Mol. Biochem. Parasitol. 75 (1996) 271–276] , 1996 .

[133]  Geoffrey I. McFadden,et al.  Plastid in human parasites , 1996, Nature.

[134]  T. Tomizaki,et al.  The Whole Structure of the 13-Subunit Oxidized Cytochrome c Oxidase at 2.8 Å , 1996, Science.

[135]  J. Raven,et al.  Free-radical-induced mutation vs redox regulation: Costs and benefits of genes in organelles , 1996, Journal of Molecular Evolution.

[136]  D. Sullivan,et al.  Plasmodium Hemozoin Formation Mediated by Histidine-Rich Proteins , 1996, Science.

[137]  A. Cowman,et al.  Plasmodium falciparum: the pfmdr2 protein is not overexpressed in chloroquine-resistant isolates of the malaria parasite. , 1994, Experimental parasitology.

[138]  I. Gluzman,et al.  Order and specificity of the Plasmodium falciparum hemoglobin degradation pathway. , 1994, The Journal of clinical investigation.

[139]  Nicholas J. Jacobs,et al.  Porphyrin Accumulation and Export by Isolated Barley (Hordeum vulgare) Plastids (Effect of Diphenyl Ether Herbicides) , 1993, Plant physiology.

[140]  N. Gray,et al.  Translational control of 5-aminolevulinate synthase mRNA by iron-responsive elements in erythroid cells. , 1993, The Journal of biological chemistry.

[141]  M. Timko,et al.  Regulation by heme of mitochondrial protein transport through a conserved amino acid motif. , 1993, Science.

[142]  G. Padmanaban,et al.  de novo biosynthesis of heme offers a new chemotherapeutic target in the human malarial parasite. , 1992, Biochemical and biophysical research communications.

[143]  A. Cerami,et al.  Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites , 1992, Nature.

[144]  A. Cowman,et al.  A P-glycoprotein homologue of Plasmodium falciparum is localized on the digestive vacuole , 1991, The Journal of cell biology.

[145]  J. Remington,et al.  Remarkable in vitro and in vivo activities of the hydroxynaphthoquinone 566C80 against tachyzoites and tissue cysts of Toxoplasma gondii , 1991, Antimicrobial Agents and Chemotherapy.

[146]  J. Beesley,et al.  Mitochondria of mammalian Plasmodium spp. , 1991, Parasitology.

[147]  I. Z. Ades,et al.  Regulation of the stability of chicken embryo liver δ-aminolevulinate synthase mRNA by hemin , 1989 .

[148]  S. Liu,et al.  Detection of hemin release during hemoglobin S denaturation. , 1988, Blood.

[149]  T. Wellems,et al.  Secretion of a malarial histidine-rich protein (Pf HRP II) from Plasmodium falciparum-infected erythrocytes , 1986, The Journal of cell biology.

[150]  P. Labbé,et al.  Purification and properties of coproporphyrinogen oxidase from the yeast Saccharomyces cerevisiae. , 1986, European journal of biochemistry.

[151]  L. Sibley,et al.  Superoxide dismutase and catalase in Toxoplasma gondii. , 1986, Molecular and biochemical parasitology.

[152]  D. V. Vander Jagt,et al.  Characterization of a hemoglobin-degrading, low molecular weight protease from Plasmodium falciparum. , 1986, Molecular and biochemical parasitology.

[153]  J. Deybach,et al.  The mitochondrial location of protoporphyrinogen oxidase. , 1985, European journal of biochemistry.

[154]  T. Osafune,et al.  W10BSmL, a mutant of Euglena gracilis var. bacillaris lacking plastids. , 1983, Experimental cell research.

[155]  S. Beale,et al.  Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis. , 1983, The Journal of biological chemistry.

[156]  C. D. Fitch,et al.  Hemin lyses malaria parasites. , 1981, Science.

[157]  J. Vanderberg,et al.  Hemolymph of Anopheles stephensi from noninfected and Plasmodium berghei-infected mosquitoes. 3. Carbohydrates. , 1979, The Journal of parasitology.

[158]  W. Trager,et al.  Plasmodium falciparum: merozoite invasion in vitro in the presence of chloroquine. , 1978, Experimental parasitology.

[159]  B. Grandchamp,et al.  The mitochondrial localization of coproporphyrinogen III oxidase. , 1978, The Biochemical journal.

[160]  G. Elder,et al.  Evidence that the coproporphyrinogen oxidase activity of rat liver is situated in the intermembrane space of mitochondria. , 1978, The Biochemical journal.

[161]  K. Chang,et al.  Nutritional Significance of Symbiotic Bacteria in Two Species of Hemoflagellates , 1974, Science.

[162]  S. Beale,et al.  14 C incorporation from exogenous compounds into -aminolevulinic acid by greening cucumber cotyledons. , 1973, Biochemical and biophysical research communications.

[163]  H. Sprinz,et al.  Morphological Effects of Chloroquine on Plasmodium berghei in Mice , 1967, Nature.

[164]  D. Hockley,et al.  Mode of Action of Chloroquine on Plasmodium berghei and P. cynomolgi , 1967, Nature.

[165]  F. Hawking Chloroquine resistance in Plasmodium berghei. , 1966, The American journal of tropical medicine and hygiene.

[166]  W. Peters Pigment Formation and Nuclear Division in Chloroquine-resistant Malaria Parasites (Plasmodium berghei, Vincke and Lips, 1948) , 1964, Nature.

[167]  L. Illis On Porphyria and the Ætiology of Werwolves , 1964, Proceedings of the Royal Society of Medicine.

[168]  A. Kumar,et al.  The enzymatic synthesis of delta-aminolevulinic acid. , 1958, The Journal of biological chemistry.

[169]  K. Gibson,et al.  Initial stages in the biosynthesis of porphyrins. 2. The formation of delta-aminolaevulic acid from glycine and succinyl-coenzyme A by particles from chicken erythrocytes. , 1958, The Biochemical journal.

[170]  D. Rittenberg,et al.  THE UTILIZATION OF GLYCINE FOR THE SYNTHESIS OF A PORPHYRIN , 1945 .

[171]  U. Kappler Bacterial sulfite-oxidizing enzymes. , 2011, Biochimica et biophysica acta.

[172]  C. Larabell,et al.  Cryo transmission X-ray imaging of the malaria parasite, P. falciparum. , 2011, Journal of structural biology.

[173]  Omar S. Hajjawi Succinate Dehydrogenase: Assembly, Regulation and Role in Human Disease , 2011 .

[174]  T. Egan,et al.  Crystallization of Synthetic Hemozoin (Beta-Hematin) Nucleated at the Surface of Synthetic Neutral Lipid Bodies , 2010 .

[175]  Alison G. Smith,et al.  Transformation of Uroporphyrinogen III into Protohaem , 2009 .

[176]  Yong Tong,et al.  Bacterial heme-transport proteins and their heme-coordination modes. , 2009, Archives of biochemistry and biophysics.

[177]  Ian Walker,et al.  Tetrapyrroles in Photodynamic Therapy , 2009 .

[178]  A. Medlock,et al.  Regulation of Mammalian Heme Biosynthesis , 2009 .

[179]  M. Badminton,et al.  Inherited Disorders of Haem Synthesis , 2009 .

[180]  Bo Wu Heme biosynthetic pathway in apicomplexan parasites , 2006 .

[181]  M. Moulin,et al.  Regulation of tetrapyrrole biosynthesis in higher plants. , 2005, Biochemical Society transactions.

[182]  R. Wilson,et al.  The genome of Plasmodium falciparum encodes an active delta-aminolevulinic acid dehydratase. , 2002, Current genetics.

[183]  P. Stephens,et al.  The structure of malaria pigment beta-haematin. , 2000, Nature.

[184]  V. C. Pandey,et al.  Heme synthesizing enzymes of Plasmodium knowlesi: a simian malaria parasite. , 1998, Experimental parasitology.

[185]  D. Sullivan,et al.  Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. , 1997, Annual review of microbiology.

[186]  C. Wilson,et al.  Characterization of the delta-aminolevulinate synthase gene homologue in P. falciparum. , 1996, Molecular and biochemical parasitology.

[187]  G. Milon,et al.  Malaria pathogenesis. , 1994, Science.

[188]  P. Jordan Chapter 1 The biosynthesis of 5-aminolaevulinic acid and its transformation into uroporphyrinogen III , 1991 .

[189]  I. Z. Ades,et al.  Regulation of the stability of chicken embryo liver delta-aminolevulinate synthase mRNA by hemin. , 1989, Biochemical and biophysical research communications.