The Calculus of Constructions

ion

[1]  John C. Reynolds,et al.  Towards a theory of type structure , 1974, Symposium on Programming.

[2]  W. Tait A realizability interpretation of the theory of species , 1975 .

[3]  de Ng Dick Bruijn,et al.  The mathematical language AUTOMATH, its usage, and some of its extensions , 1970 .

[4]  Nancy Jean Mccracken,et al.  An investigation of a programming language with a polymorphic type structure. , 1979 .

[5]  Sören Stenlund Combinators, λ-Terms and Proof Theory , 2011 .

[6]  Robert L. Constable,et al.  Recursive Definitions in Type Theory , 1985, Logic of Programs.

[7]  Gérard P. Huet,et al.  A Unification Algorithm for Typed lambda-Calculus , 1975, Theor. Comput. Sci..

[8]  A. W. Hofmann The Theory of Types , 1964 .

[9]  P. Martin-Löf An Intuitionistic Theory of Types: Predicative Part , 1975 .

[10]  J. Seldin Progress report on generalized functionality , 1979 .

[11]  P. Martin-Löf Constructive mathematics and computer programming , 1984 .

[12]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[13]  Gaisi Takeuti,et al.  On a generalized logic calculus , 1953 .

[14]  Per Martin-Löuf About Models for Intuitionistic Type Theories and the Notion of Definitional Equality , 1975 .

[15]  de Ng Dick Bruijn,et al.  A survey of the project Automath , 1980 .

[16]  Per Martin-Löf,et al.  Constructive mathematics and computer programming , 1984 .

[17]  John C. Reynolds,et al.  Polymorphism is not Set-Theoretic , 1984, Semantics of Data Types.

[18]  Hendrik Pieter Barendregt,et al.  Semantics for Classical AUTOMATH and Related Systems , 1984, Inf. Control..

[19]  Rob Nederpelt,et al.  An Approach to Theorem Proving on the Basis of a Typed Lambda-Calculus , 1980, CADE.

[20]  Luca Cardelli,et al.  On understanding types, data abstraction, and polymorphism , 1985, CSUR.

[21]  A. Church A Set of Postulates for the Foundation of Logic , 1932 .

[22]  Per Martin-Löf,et al.  Intuitionistic type theory , 1984, Studies in proof theory.

[23]  L. Cardelli A Polymorphic λ-calculus with Type:Type , 1986 .

[24]  Thierry Coquand,et al.  An Analysis of Girard's Paradox , 1986, LICS.

[25]  J. Girard Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .

[26]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[27]  T. Coquand Une théorie des constructions , 1985 .

[28]  J. Roger Hindley,et al.  To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .