Existence, uniqueness and consistency of estimation of life characteristics of three-parameter Weibull distribution based on Type-II right censored data

In this paper, we propose a new method of estimation for the parameters and quantiles of the three-parameter Weibull distribution based on Type-II right censored data. The method, based on a data transformation, overcomes the problem of unbounded likelihood. In the proposed method, under mild conditions, the estimates always exist uniquely, and the estimators are also consistent over the entire parameter space. Through Monte Carlo simulations, we further show that the proposed method of estimation performs well compared to some prominent methods in terms of bias and root mean squared error in small-sample situations. Finally, two real data sets are used to illustrate the proposed method of estimation.

[1]  Bo Ranneby,et al.  The Maximum Spacing Method. An Estimation Method Related to the Maximum Likelihood Method , 2016 .

[2]  Hideki Nagatsuka,et al.  A consistent method of estimation for the three-parameter Weibull distribution , 2013, Comput. Stat. Data Anal..

[3]  Hon Keung Tony Ng,et al.  Parameter estimation of three-parameter Weibull distribution based on progressively Type-II censored samples , 2012 .

[4]  John I. McCool,et al.  Using the Weibull Distribution: Reliability, Modeling, and Inference , 2012 .

[5]  N. Balakrishnan,et al.  A General Purpose Approximate Goodness-of-Fit Test for Progressively Type-II Censored Data , 2012, IEEE Transactions on Reliability.

[6]  D. Jukic,et al.  On nonlinear weighted total least squares parameter estimation problem for the three-parameter Weibull density , 2010 .

[7]  Narayanaswamy Balakrishnan,et al.  Conditional independence of blocked ordered data , 2009 .

[8]  D. Cousineau,et al.  Fitting the three-parameter weibull distribution: review and evaluation of existing and new methods , 2009, IEEE Transactions on Dielectrics and Electrical Insulation.

[9]  Denis Cousineau,et al.  Nearly unbiased estimators for the three-parameter Weibull distribution with greater efficiency than the iterative likelihood method. , 2009, The British journal of mathematical and statistical psychology.

[10]  N. Balakrishnan,et al.  On the maximum likelihood estimation of parameters of Weibull distribution based on complete and censored data , 2008 .

[11]  Rudolf Scitovski,et al.  On the existence of the nonlinear weighted least squares estimate for a three-parameter Weibull distribution , 2008, Comput. Stat. Data Anal..

[12]  Loon Ching Tang,et al.  A study of two estimation approaches for parameters of Weibull distribution based on WPP , 2007, Reliab. Eng. Syst. Saf..

[13]  Peter Hall,et al.  Bayesian likelihood methods for estimating the end point of a distribution , 2005 .

[14]  Wayne B. Nelson,et al.  Applied Life Data Analysis: Nelson/Applied Life Data Analysis , 2005 .

[15]  Necip Doganaksoy,et al.  Weibull Models , 2004, Technometrics.

[16]  A. Heathcote,et al.  Reply to Speckman and Rouder: A theoretical basis for QML , 2004 .

[17]  Scott D. Brown,et al.  Quantile maximum likelihood estimation of response time distributions , 2002, Psychonomic bulletin & review.

[18]  J. Bert Keats,et al.  Statistical Methods for Reliability Data , 1999 .

[19]  W. Nelson Statistical Methods for Reliability Data , 1998 .

[20]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[21]  J. B. Keats,et al.  Comparison of robust and least-squares regression in computer-generated probability plots , 1997 .

[22]  Bryan Dodson,et al.  The Weibull Analysis Handbook , 1994 .

[23]  D. Farnsworth A First Course in Order Statistics , 1993 .

[24]  P. Sen,et al.  Order statistics and inference : estimation methods , 1992 .

[25]  G. Cran,et al.  Moment estimators for the 3-parameter Weibull distribution , 1988 .

[26]  Russell C. H. Cheng,et al.  Corrected Maximum Likelihood in Non‐Regular Problems , 1987 .

[27]  Richard L. Smith Maximum likelihood estimation in a class of nonregular cases , 1985 .

[28]  Martin Newby,et al.  Properties of Moment Estimators For the 3-Parameter Weibull Distribution , 1984, IEEE Transactions on Reliability.

[29]  Russell C. H. Cheng,et al.  Estimating Parameters in Continuous Univariate Distributions with a Shifted Origin , 1983 .

[30]  Wayne Nelson,et al.  Applied life data analysis , 1983 .

[31]  Betty Jones Whitten,et al.  Modified maximum likelihood and modified moment estimators for the three-parameter weibull distribution , 1982 .

[32]  Lee J. Bain,et al.  Some complete and censored sampling results for the three-parameter weibull distribution , 1980 .

[33]  M. Newby,et al.  The Properties of Moment Estimators for the Weibull Distribution Based on the Sample Coeffkient of Variation , 1980 .

[34]  D. Griffiths Interval Estimation for the Three‐Parameter Lognormal Distribution Via the Likelihood Function , 1980 .

[35]  Stelios H. Zanakis,et al.  A simulation study of some simple estimators for the three-parameter weibull distribution , 1979 .

[36]  A. Cohen,et al.  Multi-Censored Sampling in the Three Parameter Weibull Distribution , 1975 .

[37]  Glen H. Lemon Maximum Likelihood Estimation for the Three Parameter Weibull Distribution Based on Censored Samples , 1975 .

[38]  Masatake Mori,et al.  Double Exponential Formulas for Numerical Integration , 1973 .

[39]  Albert H. Moore,et al.  Asymptotic Variances and Covariances of Maximum-Likelihood Estimators, from Censored Samples, of the Parameters of Weibull and Gamma Populations , 1967 .

[40]  Satya D. Dubey,et al.  Some Percentile Estimators for Weibull Parameters , 1967 .

[41]  Albert H. Moore,et al.  Maximum-Likelihood Estimation of the Parameters of Gamma and Weibull Populations from Complete and from Censored Samples , 1965 .

[42]  John H. K. Kao A Graphical Estimation of Mixed Weibull Parameters in Life-Testing of Electron Tubes , 1959 .

[43]  John H. K. Kao Computer Methods for Estimating Weibull Parameters in Reliability Studies , 1958 .

[44]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[45]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[46]  W. Weibull A statistical theory of the strength of materials , 1939 .

[47]  W. Weibull,et al.  The phenomenon of rupture in solids , 1939 .