Accurate Calculation of Image Moments

Image moments have been extensively used as feature descriptors. However, the quantization error introduced in discrete signals presents problems, especially when dealing with small-size images. This results in the fact that the invariant properties of moments are compromised. In this paper, we present a technique suitable for the calculation of moments from a continuous signal, derived by piecewise polynomial interpolation of the corresponding discrete one. The computed moments exhibit significantly increased accuracy while requiring trivial computational effort. Zernike moments are then computed using the proposed scheme and are shown to display increased stability to geometrical transformations.

[1]  A. Lynn Abbott,et al.  Moment invariants and quantization effects , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[2]  Huazhong Shu,et al.  A novel algorithm for fast computation of Zernike moments , 2002, Pattern Recognit..

[3]  Federico Thomas,et al.  Efficient computation of local geometric moments , 2002, IEEE Trans. Image Process..

[4]  Miroslaw Pawlak,et al.  On Image Analysis by Moments , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Sim Heng Ong,et al.  Image Analysis by Tchebichef Moments , 2001, IEEE Trans. Image Process..

[6]  Youji Iiguni,et al.  2-D DOA estimation method using Zernike moments , 2002, Signal Process..

[7]  Ioannis Andreadis,et al.  Fast Computation of Chebyshev Moments , 2006, IEEE Transactions on Circuits and Systems for Video Technology.

[8]  Alberto Del Bimbo,et al.  Visual information retrieval , 1999 .

[9]  Miroslaw Pawlak,et al.  On the Accuracy of Zernike Moments for Image Analysis , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  K. R. Ramakrishnan,et al.  Fast computation of Legendre and Zernike moments , 1995, Pattern Recognit..

[11]  Guobao Wang,et al.  Recursive computation of Tchebichef moment and its inverse transform , 2006, Pattern Recognit..

[12]  Zhenjiang Miao,et al.  Zernike moment-based image shape analysis and its application , 2000, Pattern Recognit. Lett..

[13]  Min-Seok Choi,et al.  A novel two stage template matching method for rotation and illumination invariance , 2002, Pattern Recognit..

[14]  Mehdi Hatamian,et al.  A real-time two-dimensional moment generating algorithm and its single chip implementation , 1986, IEEE Trans. Acoust. Speech Signal Process..

[15]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[16]  Jau-Ling Shih,et al.  A new system for trademark segmentation and retrieval , 2001, Image Vis. Comput..

[17]  Mandyam D. Srinath,et al.  Invariant character recognition with Zernike and orthogonal Fourier-Mellin moments , 2002, Pattern Recognit..

[18]  Ioannis Andreadis,et al.  Efficient hardware architectures for computation of image moments , 2004, Real Time Imaging.

[19]  W. Greub Linear Algebra , 1981 .

[20]  Alfredo Ruggeri,et al.  Automatic recognition of cell layers in corneal confocal microscopy images , 2002, Comput. Methods Programs Biomed..

[21]  Raveendran Paramesran,et al.  On the computational aspects of Zernike moments , 2007, Image Vis. Comput..

[22]  M. Teague Image analysis via the general theory of moments , 1980 .

[23]  Whoi-Yul Kim,et al.  A region-based shape descriptor using Zernike moments , 2000, Signal Process. Image Commun..

[24]  Ioannis Andreadis,et al.  Real-time computation of Zernike moments , 2005, IEEE Transactions on Circuits and Systems for Video Technology.

[25]  Chee-Way Chong,et al.  An Efficient Algorithm for Fast computation of Zernike Moments , 2002, Joint Conference on Information Sciences.

[26]  Raveendran Paramesran,et al.  Image analysis by Krawtchouk moments , 2003, IEEE Trans. Image Process..

[27]  Jan Flusser,et al.  Fast calculation of geometric moments of binary images , 1998 .