The high-temperature deformation behavior of a novel near-α titanium alloy and hot-forging based on the processing map

[1]  P. Cao,et al.  Microstructural manipulation and improved mechanical properties of a near α titanium alloy , 2020 .

[2]  Y. Lin,et al.  Hot compressive deformation behavior and microstructure evolution of a Ti-55511 alloy with basket-weave microstructures , 2019, Vacuum.

[3]  W. Zeng,et al.  Deformation behavior and microstructure evolution during hot working of Ti60 alloy with lamellar starting microstructure , 2019, Journal of Alloys and Compounds.

[4]  Yoshiaki Toda,et al.  Effects of Zr and Si addition on high-temperature mechanical properties and microstructure in Ti-10Al-2Nb-based alloys , 2019, Materials Science and Engineering: A.

[5]  Qinyang Zhao,et al.  Comparison of hot deformation behaviour and microstructural evolution for Ti-5Al-5V-5Mo-3Cr alloys prepared by powder metallurgy and ingot metallurgy approaches , 2019, Materials & Design.

[6]  Qinyang Zhao,et al.  Evaluation of the hot workability and deformation mechanisms for a metastable beta titanium alloy prepared from powder , 2019, Materials Characterization.

[7]  S. Abbasi,et al.  A comparative study on the hot deformation behavior of Ti 5Al 5Mo 5V 3Cr and newly developed Ti 4Al 7Mo 3V 3Cr alloys , 2019, Vacuum.

[8]  Jianjun Hu,et al.  Hot deformation behavior and microstructure evolution of Ti-6Cr-5Mo-5V-4Al alloy during hot compression , 2019, Vacuum.

[9]  W. Zeng,et al.  Analysis of flow softening during hot deformation of Ti-17 alloy with the lamellar structure , 2018, Journal of Alloys and Compounds.

[10]  Huang Liang,et al.  Hot deformation and dynamic recrystallization of a near-beta titanium alloy in the β single phase region , 2018, Vacuum.

[11]  Lianxi Hu,et al.  3D processing map and hot deformation behavior of 6A02 aluminum alloy , 2018 .

[12]  Binghai Yan,et al.  Discontinuous yielding behavior and microstructure evolution during hot deformation of TC11 alloy , 2017 .

[13]  Weidong Huang,et al.  Formation mechanism of the α variant and its influence on the tensile properties of laser solid formed Ti-6Al-4V titanium alloy , 2017 .

[14]  A. Jäger,et al.  Flow softening and dynamic recrystallization behavior of BT9 titanium alloy: A study using process map development , 2017 .

[15]  X. Song,et al.  Effect of Heat Treatment on the Microstructure Evolution of Ti-6Al-3Sn-3Zr-3Mo-3Nb-1W-0.2Si Titanium Alloy , 2016 .

[16]  Di Zhang,et al.  Strengthening effect of in situ TiC particles in Ti matrix composite at temperature range for hot working , 2016 .

[17]  Miaoquan Li,et al.  Characterization of discontinuous yielding phenomenon in isothermal compression of TC8 titanium alloy , 2016 .

[18]  He Yang,et al.  Microstructure control techniques in primary hot working of titanium alloy bars: A review , 2016 .

[19]  M. Fu,et al.  Effect of the initial microstructure on the deformation behavior of Ti60 titanium alloy at high temperature processing , 2014 .

[20]  Yuyong Chen,et al.  Characterization of hot deformation behavior of as-forged TiAl alloy , 2014 .

[21]  Ho-Jun Song,et al.  Effect of zirconium content on the microstructure, physical properties and corrosion behavior of Ti alloys , 2014 .

[22]  He Yang,et al.  Unified modeling of flow softening and globularization for hot working of two-phase titanium alloy with a lamellar colony microstructure , 2014 .

[23]  Yuyong Chen,et al.  Hot workability of as-cast Ti–45Al–5.4V–3.6Nb–0.3Y alloy , 2014 .

[24]  W. Ye,et al.  Tensile behavior at 700 °C in Ti–Al–Sn–Zr–Mo–Nb–W–Si alloy with a bi-modal microstructure , 2014 .

[25]  B. P. Kashyap,et al.  Modeling the hot working behavior of near-α titanium alloy IMI 834 , 2013 .

[26]  W. Zeng,et al.  Characterization of high-temperature deformation behavior of as-cast Ti60 titanium alloy using processing map , 2013 .

[27]  Yuanfei Han,et al.  Optimization of forging process parameters of Ti600 alloy by using processing map , 2011 .

[28]  Yuanfei Han,et al.  The influence of thermomechanical processing on microstructural evolution of Ti600 titanium alloy , 2011 .

[29]  W. Zeng,et al.  High-temperature deformation behavior of Ti60 titanium alloy , 2011 .

[30]  Yu Sun,et al.  Characterization of hot deformation behavior of as-cast TC21 titanium alloy using processing map , 2011 .

[31]  X. Li,et al.  Optimization of β/near-β forging process parameters of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si by using processing maps , 2009 .

[32]  F. Smeacetto,et al.  Microstructure, properties and oxidation behavior of the glass–ceramic based coating on near-α titanium alloy , 2009 .

[33]  S. L. Semiatin,et al.  Microstructure evolution during warm working of Ti–6Al–4V with a colony-α microstructure , 2009 .

[34]  M. Jahazi,et al.  Flow stress prediction during hot working of near-α titanium alloys , 2007 .

[35]  P. Wanjara,et al.  Hot working behavior of near-α alloy IMI834 , 2005 .

[36]  Geping Li,et al.  The effect of increased zirconium content on the microstructure and mechanical properties of Ti-1100 alloy , 2004 .

[37]  J. Hirth,et al.  Apparent activation energy and stress exponent in materials with a high Peierls stress , 2002 .

[38]  Chun-ming Liu,et al.  Characteristics of microstructures and second-phase particles in Y-bearing Ti-1100 alloy , 2002 .

[39]  Y. V. R. K. Prasad,et al.  Processing maps for hot working of titanium alloys , 1998 .

[40]  Y. Prasad,et al.  Modelling of hot deformation for microstructural control , 1998 .

[41]  T. N. Baker,et al.  Deformation characteristics of IMI685 titanium alloy under β isothermal forging solutions , 1995 .

[42]  N. D. Reca,et al.  Autodifusion de titanio beta y hafnio beta , 1968 .

[43]  C. Sellars,et al.  On the mechanism of hot deformation , 1966 .

[44]  C. Ramachandra,et al.  Characterization of silicides in high-temperature titanium alloys , 1997 .