Ube2w and ataxin-3 coordinately regulate the ubiquitin ligase CHIP.

[1]  A. Ciechanover,et al.  Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms , 2011, Cell Death and Differentiation.

[2]  P. C. Janiesch,et al.  The Machado-Joseph disease deubiquitylase ATX-3 couples longevity and proteostasis , 2011, Nature Cell Biology.

[3]  Suneil K. Kalia,et al.  Ubiquitinylation of α-Synuclein by Carboxyl Terminus Hsp70-Interacting Protein (CHIP) Is Regulated by Bcl-2-Associated Athanogene 5 (BAG5) , 2011, PloS one.

[4]  H. Paulson,et al.  Activity and Cellular Functions of the Deubiquitinating Enzyme and Polyglutamine Disease Protein Ataxin-3 Are Regulated by Ubiquitination at Lysine 117* , 2010, The Journal of Biological Chemistry.

[5]  Rebecca B. Smith,et al.  Native Functions of the Androgen Receptor Are Essential to Pathogenesis in a Drosophila Model of Spinobulbar Muscular Atrophy , 2010, Neuron.

[6]  Huda Y. Zoghbi,et al.  SCA1-like Disease in Mice Expressing Wild-Type Ataxin-1 with a Serine to Aspartic Acid Replacement at Residue 776 , 2010, Neuron.

[7]  Giuseppe Nicastro,et al.  Understanding the Role of the Josephin Domain in the PolyUb Binding and Cleavage Properties of Ataxin-3 , 2010, PloS one.

[8]  M. Hoch,et al.  Chaperone-Assisted Selective Autophagy Is Essential for Muscle Maintenance , 2010, Current Biology.

[9]  S. Finkbeiner,et al.  Serines 13 and 16 Are Critical Determinants of Full-Length Human Mutant Huntingtin Induced Disease Pathogenesis in HD Mice , 2009, Neuron.

[10]  S. Gygi,et al.  S5a promotes protein degradation by blocking synthesis of nondegradable forked ubiquitin chains , 2009, The EMBO journal.

[11]  Harry T Orr,et al.  Pathogenic Mechanisms of a Polyglutamine-mediated Neurodegenerative Disease, Spinocerebellar Ataxia Type 1* , 2009, Journal of Biological Chemistry.

[12]  H. Paulson,et al.  Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin‐3 , 2009, The EMBO journal.

[13]  Zhigang Yu,et al.  CHIP deletion reveals functional redundancy of E3 ligases in promoting degradation of both signaling proteins and expanded glutamine proteins. , 2008, Human molecular genetics.

[14]  N. Eissa,et al.  A Critical Role for CHIP in the Aggresome Pathway , 2008, Molecular and Cellular Biology.

[15]  H. Paulson,et al.  Polyglutamine neurodegeneration: protein misfolding revisited , 2008, Trends in Neurosciences.

[16]  H. Paulson,et al.  The Deubiquitinating Enzyme Ataxin-3, a Polyglutamine Disease Protein, Edits Lys63 Linkages in Mixed Linkage Ubiquitin Chains* , 2008, Journal of Biological Chemistry.

[17]  K. Wilkinson,et al.  Protein partners of deubiquitinating enzymes. , 2008, The Biochemical journal.

[18]  S. Elledge,et al.  A quantitative atlas of mitotic phosphorylation , 2008, Proceedings of the National Academy of Sciences.

[19]  J. Nix,et al.  Interactions between the quality control ubiquitin ligase CHIP and ubiquitin conjugating enzymes , 2008, BMC Structural Biology.

[20]  Janghoo Lim,et al.  Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1 , 2008, Nature.

[21]  Qiuyan Wang,et al.  Inhibition of p97-dependent Protein Degradation by Eeyarestatin I* , 2008, Journal of Biological Chemistry.

[22]  T. Klockgether,et al.  Inactivation of the mouse Atxn3 (ataxin-3) gene increases protein ubiquitination. , 2007, Biochemical and biophysical research communications.

[23]  P. Brzovic,et al.  E2–BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages , 2007, Nature Structural &Molecular Biology.

[24]  F. Xia,et al.  The ubiquitin-interacting motif containing protein RAP80 interacts with BRCA1 and functions in DNA damage repair response. , 2007, Cancer research.

[25]  Sebastian A. Wagner,et al.  E3-independent monoubiquitination of ubiquitin-binding proteins. , 2007, Molecular cell.

[26]  Janghoo Lim,et al.  ATAXIN-1 Interacts with the Repressor Capicua in Its Native Complex to Cause SCA1 Neuropathology , 2006, Cell.

[27]  S. Gygi,et al.  Deubiquitinating Enzyme Ubp6 Functions Noncatalytically to Delay Proteasomal Degradation , 2006, Cell.

[28]  R. Pittman,et al.  Ataxin-3 binds VCP/p97 and regulates retrotranslocation of ERAD substrates. , 2006, Human molecular genetics.

[29]  A. Brice,et al.  A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K–Akt signalling , 2006, Nature Cell Biology.

[30]  Min Gao,et al.  Activation of the E3 ubiquitin ligase Itch through a phosphorylation-induced conformational change. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[31]  C. Borchers,et al.  Regulation of the Cytoplasmic Quality Control Protein Degradation Pathway by BAG2* , 2005, Journal of Biological Chemistry.

[32]  L. Neckers,et al.  Direct identification of ubiquitination sites on ubiquitin-conjugated CHIP using MALDI mass spectrometry. , 2005, Journal of proteome research.

[33]  M. Cheetham,et al.  HSJ1 Is a Neuronal Shuttling Factor for the Sorting of Chaperone Clients to the Proteasome , 2005, Current Biology.

[34]  H. Paulson,et al.  Ataxin-3 suppresses polyglutamine neurodegeneration in Drosophila by a ubiquitin-associated mechanism. , 2005, Molecular cell.

[35]  Keiji Tanaka,et al.  Co-chaperone CHIP Associates with Expanded Polyglutamine Protein and Promotes Their Degradation by Proteasomes* , 2005, Journal of Biological Chemistry.

[36]  Barrington G. Burnett,et al.  The polyglutamine neurodegenerative protein ataxin 3 regulates aggresome formation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[37]  S. Jentsch,et al.  A Series of Ubiquitin Binding Factors Connects CDC48/p97 to Substrate Multiubiquitylation and Proteasomal Targeting , 2005, Cell.

[38]  M. Karin,et al.  Jun Turnover Is Controlled Through JNK-Dependent Phosphorylation of the E3 Ligase Itch , 2004, Science.

[39]  H. Ishimoto,et al.  Molecular clearance of ataxin‐3 is regulated by a mammalian E4 , 2004, The EMBO journal.

[40]  Barrington G. Burnett,et al.  The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. , 2003, Human molecular genetics.

[41]  V. Godfrey,et al.  CHIP activates HSF1 and confers protection against apoptosis and cellular stress , 2003, The EMBO journal.

[42]  D. Peet,et al.  Defining the Role for XAP2 in Stabilization of the Dioxin Receptor* , 2003, Journal of Biological Chemistry.

[43]  T. Hashikawa,et al.  CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. , 2002, Molecular cell.

[44]  D. Cyr,et al.  CHIP Is a U-box-dependent E3 Ubiquitin Ligase , 2001, The Journal of Biological Chemistry.

[45]  Y. Xiong,et al.  The CUL1 C-Terminal Sequence and ROC1 Are Required for Efficient Nuclear Accumulation, NEDD8 Modification, and Ubiquitin Ligase Activity of CUL1 , 2000, Molecular and Cellular Biology.

[46]  Angus Chen,et al.  Conjugation of Nedd8 to CUL1 Enhances the Ability of the ROC1-CUL1 Complex to Promote Ubiquitin Polymerization* , 2000, The Journal of Biological Chemistry.

[47]  T. Toda,et al.  Covalent modifier NEDD8 is essential for SCF ubiquitin‐ligase in fission yeast , 2000, The EMBO journal.

[48]  E. Lightcap,et al.  A Nedd8 conjugation pathway is essential for proteolytic targeting of p27Kip1 by ubiquitination. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[49]  R. Honda,et al.  Modification of cullin-1 by ubiquitin-like protein Nedd8 enhances the activity of SCF(skp2) toward p27(kip1). , 2000, Biochemical and biophysical research communications.

[50]  V. Chau,et al.  Nedd8 Modification of Cul-1 Activates SCFβTrCP-Dependent Ubiquitination of IκBα , 2000, Molecular and Cellular Biology.

[51]  J. Höhfeld,et al.  The Ubiquitin-related BAG-1 Provides a Link between the Molecular Chaperones Hsc70/Hsp70 and the Proteasome* , 2000, The Journal of Biological Chemistry.

[52]  Martin Rechsteiner,et al.  Recognition of the polyubiquitin proteolytic signal , 2000, The EMBO journal.

[53]  C. Patterson,et al.  CHIP-dependent p53 regulation occurs specifically during cellular senescence. , 2011, Free radical biology & medicine.

[54]  Thomas M. Durcan,et al.  The Machado-Joseph disease-associated mutant form of ataxin-3 regulates parkin ubiquitination and stability. , 2011, Human molecular genetics.

[55]  L. Petrucelli,et al.  Brain CHIP: removing the culprits in neurodegenerative disease. , 2007, Trends in molecular medicine.

[56]  M. Minami,et al.  Purification and assay of the chaperone-dependent ubiquitin ligase of the carboxyl terminus of Hsc70-interacting protein. , 2005, Methods in enzymology.

[57]  Raymond J. Deshaies,et al.  Function and regulation of cullin–RING ubiquitin ligases , 2005, Nature Reviews Molecular Cell Biology.

[58]  Holly McDonough,et al.  CHIP: a link between the chaperone and proteasome systems , 2003, Cell stress & chaperones.

[59]  P. Connell,et al.  The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins , 2000, Nature Cell Biology.

[60]  D. Cyr,et al.  The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation , 2000, Nature Cell Biology.