State Space Reductions for Alternating Büchi Automata

Quotienting by simulation equivalences is a well-established technique for reducing the size of nondeterministic Buchi automata.We adapt this technique to alternating Buchi automata. To this end we suggest two new quotients, namely minimax and semi-elective quotients, prove that they preserve the recognized languages, and show that computing them is not more difficult than computing quotients for nondeterministic Buchi automata. We explain the merits of of our quotienting procedures with respect to converting alternating Buchi automata into nondeterministic ones.

[1]  Thomas A. Henzinger,et al.  Computing simulations on finite and infinite graphs , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[2]  E. Allen Emerson,et al.  Tree automata, mu-calculus and determinacy , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[3]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report) , 1986, LICS.

[4]  Thomas A. Henzinger,et al.  Fair Simulation , 1997, Inf. Comput..

[5]  E. Allen Emerson,et al.  The complexity of tree automata and logics of programs , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[6]  Thomas Noll,et al.  Truth/SLC - A Parallel Verification Platform for Concurrent Systems , 2001, CAV.

[7]  Robin Milner,et al.  An Algebraic Definition of Simulation Between Programs , 1971, IJCAI.

[8]  Yuri Gurevich,et al.  Trees, automata, and games , 1982, STOC '82.

[9]  Kousha Etessami,et al.  Optimizing Büchi Automata , 2000, CONCUR.

[10]  Marcin Jurdzinski,et al.  Small Progress Measures for Solving Parity Games , 2000, STACS.

[11]  Orna Grumberg,et al.  Checking for fair simulation in models with B uchi fairness constraints , 2000 .

[12]  Fabio Somenzi,et al.  Efficient Büchi Automata from LTL Formulae , 2000, CAV.

[13]  Paul Gastin,et al.  Fast LTL to Büchi Automata Translation , 2001, CAV.

[14]  Pierre Wolper,et al.  Reasoning About Infinite Computations , 1994, Inf. Comput..

[15]  Satoru Miyano,et al.  Alternating Finite Automata on omega-Words , 1984, CAAP.

[16]  Kenneth L. McMillan,et al.  Symbolic model checking , 1992 .

[17]  David E. Muller,et al.  Weak alternating automata give a simple explanation of why most temporal and dynamic logics are decidable in exponential time , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[18]  Thomas A. Henzinger,et al.  Fair Bisimulation , 2000, TACAS.

[19]  Pierre Wolper,et al.  An automata-theoretic approach to branching-time model checking , 2000, JACM.

[20]  Kousha Etessami,et al.  Fair Simulation Relations, Parity Games, and State Space Reduction for Büchi Automata , 2001, ICALP.

[21]  Thomas A. Henzinger,et al.  Alternating Refinement Relations , 1998, CONCUR.

[22]  Benjamin C. Pierce,et al.  Theoretical Aspects of Computer Software , 2001, Lecture Notes in Computer Science.

[23]  Fausto Giunchiglia,et al.  Improved Automata Generation for Linear Temporal Logic , 1999, CAV.

[24]  Alan J. Hu,et al.  Checking for Language Inclusion Using Simulation Preorders , 1991, CAV.

[25]  Pierre Wolper,et al.  Simple on-the-fly automatic verification of linear temporal logic , 1995, PSTV.

[26]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[27]  Moshe Y. Vardi Nontraditional Applications of Automata Theory , 1994, TACS.

[28]  Kousha Etessami,et al.  A Hierarchy of Polynomial-Time Computable Simulations for Automata , 2002, CONCUR.

[29]  Fabio Somenzi,et al.  Fair Simulation Minimization , 2002, CAV.