Comparison of iron-bearing minerals in ordinary chondrites from H, L and LL groups using Mössbauer spectroscopy with a high velocity resolution.

[1]  Z. Homonnay,et al.  Mössbauer parameters of ordinary chondrites influenced by the fit accuracy of the troilite component: an example of Chelyabinsk LL5 meteorite , 2016 .

[2]  M. Oshtrakh,et al.  The 57Fe hyperfine interactions in the iron bearing phases in different fragments of Chelyabinsk LL5 meteorite: a comparative study using Mössbauer spectroscopy with a high velocity resolution , 2015 .

[3]  Z. Homonnay,et al.  A comparative study of troilite in bulk ordinary chondrites Farmington L5, Tsarev L5 and Chelyabinsk LL5 using Mössbauer spectroscopy with a high velocity resolution , 2014 .

[4]  J. Sitek,et al.  Analyses of Rumanová meteorite , 2014 .

[5]  M. Oshtrakh,et al.  Characterization of a Chelyabinsk LL5 meteorite fragment using Mössbauer spectroscopy with a high velocity resolution , 2014 .

[6]  K. Szlachta,et al.  Mössbauer studies of Soltmany and Shisr 176 meteorites – comparison with other ordinary chondrites , 2014 .

[7]  J. Cadogan,et al.  An 57Fe Mössbauer study of three Australian L5 ordinary-chondrite meteorites: dating Kinclaven–001 , 2013 .

[8]  V. Porubčan,et al.  Mössbauer study of Slovak meteorites , 2013 .

[9]  V. A. Semionkin,et al.  Mössbauer spectroscopy with a high velocity resolution: advances in biomedical, pharmaceutical, cosmochemical and nanotechnological research. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[10]  J. Cadogan,et al.  Mössbauer study of the Ordinary-Chondrite meteorite Thylacine Hole–001 , 2012 .

[11]  O. Milder,et al.  A high velocity resolution Mössbauer spectrometric system for biomedical research , 2010 .

[12]  O. Milder,et al.  Mössbauer spectroscopy with high velocity resolution: an increase of analytical possibilities in biomedical research , 2009 .

[13]  V. A. Semionkin,et al.  Mössbauer spectroscopy with high velocity resolution in the study of ordinary chondrites , 2008 .

[14]  V. A. Semionkin,et al.  A study of ordinary chondrites by Mössbauer spectroscopy with high‐velocity resolution , 2008 .

[15]  V. A. Semionkin,et al.  Determination of quadrupole splitting for 57Fe in M1 and M2 sites of both olivine and pyroxene in ordinary chondrites using Mössbauer spectroscopy with high velocity resolution , 2007 .

[16]  M. Oshtrakh,et al.  Study of ordinary chondrites by Mössbauer spectroscopy with high velocity resolution: identification of M1 and M2 sites in silicate phases , 2007 .

[17]  D. Morata,et al.  Room temperature 57Fe Mössbauer spectroscopy of ordinary chondrites from the Atacama Desert (Chile): constraining the weathering processes on desert meteorites , 2007 .

[18]  T. Sharp,et al.  Estimating shock pressures based on high‐pressure minerals in shock‐induced melt veins of L chondrites , 2006 .

[19]  C. Brinkmann,et al.  Octahedral cation partitioning in Mg,Fe2+-olivine. Mössbauer spectroscopic study of synthetic (Mg0.5 Fe2+0.5)2SiO4 (Fa50) , 2006 .

[20]  G. Cressey,et al.  A Mössbauer spectroscopy and X‐ray diffraction study of ordinary chondrites: Quantification of modal mineralogy and implications for redox conditions during metamorphism , 2005 .

[21]  R. P. Tripathi,et al.  Systematics of Mössbauer absorption areas in ordinary chondrites and applications to a newly fallen meteorite in Jodhpur, India , 2003 .

[22]  J. Beckett,et al.  The thermal history of equilibrated ordinary chondrites and the relationship between textural maturity and temperature , 2002 .

[23]  M. Urbański,et al.  A Mössbauer Study of Meteorites — A possible Criterion to Identify Meteorites from the same Parent Body? , 2002 .

[24]  R. P. Tripathi,et al.  Classification of the Didwana‐Rajod meteorite: A Mössbauer spectroscopic study , 2000 .

[25]  V. Tcherdyntsev,et al.  Transformations and fine magnetic structure of mechanically alloyed Fe-Ni alloys , 1999 .

[26]  F. Grandjean,et al.  A Mössbauer spectral study of the Jilin meteorite , 1998 .

[27]  R. Jeanloz,et al.  Magnetic ordering transition in Mg (sub 0.9) Fe (sub 0.1) SiO 3 orthopyroxene , 1992 .

[28]  R. Scorzelli Application of the Mössbauer effect to the study of meteorites—A review , 1991 .

[29]  E. Jarosewich,et al.  Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses , 1990 .

[30]  T. Ericsson,et al.  A Mössbauer investigation of natural troilite from the Agpalilik meteorite , 1988 .

[31]  S. S. Hanna,et al.  Mössbauer analysis of iron in stone meteorites , 1964 .

[32]  B. Mason Olivine composition in chondrites , 1963 .