Auditory interneurones in the metathoracic ganglion of the grasshopper Chorthippus biguttulus. I, Morphological and physiological characterization

1.Auditory intemeurones originating in the metathoracic ganglion of females of the grasshopper Chorthippus biguttulus can be classified as local (SN), bisegmental (BSN), T-shaped (TN) and ascending neurones (AN). A comparison of branching patterns and physiological properties indicates that auditory interneurones of C. biguttulus are homologous with those described for the locust. 2.Eighteen types of auditory neurones are morphologically characterized on the basis of Lucifer Yellow staining. All of them branch bilaterally in the metathoracic ganglion. Smooth dendrites, from which postsynaptic potentials (PSPs) can be recorded, predominate on the side ipsilateral to the soma. If ‘beaded’ branches exist, they predominate contralaterally. The ascending axon runs contralaterally to the soma, except in T-fibres. 3.Auditory receptors respond tonically. The dynamic range of their intensity-response curve covers 20–25 dB. Local, bisegmental and T-shaped neurones are most sensitive to stimulation ipsilateral to the soma. The responses of SN1 and TNI to white-noise stimuli are similar to those of receptors, while phasic-tonic responses are found in SN4, SN5, SN7 and BSN1. The bisegmental neurones receive side-dependent inhibition that corresponds to a 20–30dB attenuation. One local element (SN6) is predominantly inhibited by acoustic stimuli. 4.Ascending neurones are more sensitive to contralateral stimulation (i.e. on their axon side). Only one of them (AN6) responds tonically to white-noise stimuli at all intensities; others exhibit a tonic discharge only at low or at high intensities.One neurone (AN12) responds with a phasic burst over a wide intensity range. The most directional neurones (AN1, AN2) are excited by contralateral stimuli and (predominantly) inhibited by ipsilateral stimuli. Three ascending neurones (AN13-AN15) are spontaneously active and are inhibited by acoustic stimuli. 5.All auditory intemeurones, except SN5, are more sensitive to pure tones below 10 kHz than to ultrasound.

[1]  A. Perdeck The Isolating Value of Specific Song Patterns in Two Sibling Species of Grasshoppers (Chorthippus Brunneus Thunb. and C. Biguttulus L.) , 1958 .

[2]  N. Tinbergen,et al.  Instinktlehre : Vergleichende Erforschung angeborenen Verhaltens , 1966 .

[3]  W Zarnack,et al.  A data acquisition processor with data reduction for electrophysiological experiments. , 1977, Fortschritte der Zoologie.

[4]  A. V. Popov,et al.  Neuroethology of Acoustic Communication , 1978 .

[5]  J. Rheinlaender,et al.  ‘Time–intensity trading’ in locust auditory interneurones , 1979, Nature.

[6]  D. Helversen,et al.  Species Recognition and Acoustic Localization in Acridid Grasshoppers: A Behavioral Approach , 1983 .

[7]  H. Wolf Response patterns of two auditory interneurons in a freely moving grasshopper (Chorthippus biguttulus L.) , 1986, Journal of Comparative Physiology A.

[8]  Spatial segregation of synaptic inputs and outputs in a locust auditory interneurone , 1986, The Journal of comparative neurology.

[9]  H. Römer,et al.  Organization of a sensory neuropile in the auditory pathway of two groups of orthoptera , 1988, The Journal of comparative neurology.

[10]  D. Robert THE AUDITORY BEHAVIOUR OF FLYING LOCUSTS , 1989 .

[11]  C. H. F. Rowell The taxonomy of invertebrate neurons: a plea for a new field , 1989, Trends in Neurosciences.

[12]  D. Helversen,et al.  Pattern Recognition and Directional Analysis: Routes and Stations of Information Flow in the CNS of a Grasshopper , 1990 .

[13]  A. Feng,et al.  Neural basis of sound pattern recognition in anurans , 1990, Progress in Neurobiology.

[14]  B. Ronacher,et al.  Auditory interneurones in the metathoracic ganglion of the grasshopper Chorthippus biguttulus. II: Processing of temporal patterns of the song of the male , 1991 .

[15]  D. Helversen Parallel processing in auditory pattern recognition and directional analysis by the grasshopperChorthippus biguttulus L. (Acrididae) , 1984, Journal of Comparative Physiology A.

[16]  Heiner Römer,et al.  Morphology and physiology of auditory interneurons in the metathoracic ganglion of the locust , 1984, Journal of Comparative Physiology A.

[17]  B. Hedwig On the role in stridulation of plurisegmental interneurons of the acridid grasshopperOmocestus viridulus L. , 1986, Journal of Comparative Physiology A.

[18]  Neuronal correlates of the recognition of pulsed sound signals in the grass frog , 2004, Journal of Comparative Physiology A.

[19]  H. Rehbein Auditory neurons in the ventral cord of the locust: Morphological and functional properties , 2004, Journal of comparative physiology.

[20]  What is an “auditory” neurone? , 1984, Naturwissenschaften.

[21]  Bernhard Ronacher,et al.  Filtering of behaviourally relevant temporal parameters of a grasshopper's song by an auditory interneuron , 1988, Journal of Comparative Physiology A.

[22]  Lutz-Jörg Adam,et al.  Neurophysiologie des Hörens und Bioakustik einer Feldheuschrecke (Locusta migratoria) , 1969, Zeitschrift für vergleichende Physiologie.

[23]  Dagmar von Helversen Gesang des Männchens und Lautschema des Weibchens bei der FeldheuschreckeChorthippus biguttulus (Orthoptera, Acrididae) , 1972, Journal of comparative physiology.

[24]  N. Elsner Neuroethology of sound production in gomphocerine grasshoppers (Orthoptera: Acrididae) , 2004, Journal of comparative physiology.

[25]  O. V. Helversen,et al.  Separate localization of sound recognizing and sound producing neural mechanisms in a grasshopper , 2004, Journal of Comparative Physiology A.

[26]  J. Altman,et al.  The suboesophageal ganglion: a ‘missing link’ in the auditory pathway of the locust , 2004, Journal of Comparative Physiology A.

[27]  Projection areas and branching patterns of the tympanal receptor cells in migratory locusts, Locusta migratoria and Schistocerca gregaria , 1988, Cell and Tissue Research.

[28]  A. Surlykke,et al.  Temporal coding in the auditory receptor of the moth ear , 1988, Journal of Comparative Physiology A.

[29]  K. Kalmring,et al.  Projections of auditory ventral-cord neurons in the supraesophageal ganglion ofLocusta migratoria , 1980, Zoomorphologie.