Hirshfeld‐based intrinsic polarizability density representations as a tool to analyze molecular polarizability

In this work, a general scheme to visualize polarizability density distributions is proposed and implemented in a Hirshfeld‐based partitioning scheme. This allows us to obtain easy‐to‐interpret pictorial representations of both total and intrinsic polarizabilities where each point of the density is formed by the contribution of any atom or group of atoms in the molecule. In addition, the procedure used here permits the possibility of removing the size dependence of the electric‐dipole polarizability. Such a development opens new horizons in exploring new applications for the analysis of the molecular polarizability tensor. For instance, this visualization shows which atoms or regions are more polarizable distinguishing, moreover, the fine structure of atoms affected by the vicinity, and might extend the dipole polarizability as a tool for aromaticity studies in polycyclic aromatic hydrocarbons. Additionally, this approach can serve us to assess the methods performance in describing the interaction of electric fields with a molecule and local electron correlation effects in intrinsic polarizabilities. © 2015 Wiley Periodicals, Inc.

[1]  Origin of the size-dependence of the polarizability per atom in heterogeneous clusters: The case of AlP clusters. , 2010, The Journal of chemical physics.

[2]  C. Van Alsenoy,et al.  An Extension of the Hirshfeld Method to Open Shell Systems Using Fractional Occupations. , 2011, Journal of chemical theory and computation.

[3]  James J. P. Stewart,et al.  Calculation of the nonlinear optical properties of molecules , 1990 .

[4]  R. Bader Atoms in molecules in external fields , 1989 .

[5]  A. Becke A multicenter numerical integration scheme for polyatomic molecules , 1988 .

[6]  Todd A. Keith,et al.  Properties of atoms in molecules: additivity and transferability of group polarizabilities , 1992 .

[7]  Patrick Bultinck,et al.  Critical analysis and extension of the Hirshfeld atoms in molecules. , 2007, The Journal of chemical physics.

[8]  C. Pouchan,et al.  Unleashing the quadratic nonlinear optical responses of graphene by confining white-graphene (h-BN) sections in its framework. , 2014, Journal of the American Chemical Society.

[9]  S. Fias,et al.  Conceptual DFT: chemistry from the linear response function. , 2014, Chemical Society reviews.

[10]  E. Hückel,et al.  Quanstentheoretische Beiträge zum Benzolproblem , 1931 .

[11]  Brad A. Bauer,et al.  Variation of ion polarizability from vacuum to hydration: insights from Hirshfeld partitioning. , 2010, The journal of physical chemistry. A.

[12]  Distributed polarizabilities using the topological theory of atoms in molecules , 1994 .

[13]  J. Aihara Circuit resonance energy: a key quantity that links energetic and magnetic criteria of aromaticity. , 2006, Journal of the American Chemical Society.

[14]  P. Geerlings,et al.  Evaluating London Dispersion Interactions in DFT: A Nonlocal Anisotropic Buckingham-Hirshfeld Model. , 2012, Journal of chemical theory and computation.

[15]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[16]  P. Szarek,et al.  Polarization justified Fukui functions. , 2009, The Journal of chemical physics.

[17]  P. Geerlings,et al.  Evaluating interaction energies of weakly bonded systems using the Buckingham-Hirshfeld method. , 2014, The Journal of chemical physics.

[18]  C. Pouchan,et al.  Electric Property Variations in Nanosized Hexagonal Boron Nitride/Graphene Hybrids , 2015 .

[19]  C. Van Alsenoy,et al.  FOHI-D: an iterative Hirshfeld procedure including atomic dipoles. , 2014, The Journal of chemical physics.

[20]  P. Geerlings,et al.  Accurate interaction energies at density functional theory level by means of an efficient dispersion correction. , 2009, The Journal of chemical physics.

[21]  P. Macchi,et al.  PolaBer: a program to calculate and visualize distributed atomic polarizabilities based on electron density partitioning , 2014 .

[22]  Revisiting the calculation of condensed Fukui functions using the quantum theory of atoms in molecules. , 2007, The Journal of chemical physics.

[23]  M. Mandado Theoretical basis for the correlation between energetic, magnetic, and electron density criteria of aromaticity: definition of molecular circuit electric conductance , 2010 .

[24]  A. Becke,et al.  Exchange-hole dipole moment and the dispersion interaction: high-order dispersion coefficients. , 2006, The Journal of chemical physics.

[25]  C. Pouchan,et al.  Electric response properties of neutral and charged Al13X (X = Li, Na, K) magic clusters. A comprehensive ab initio and density functional comparative study , 2013 .

[26]  Christophe Chipot,et al.  A comprehensive approach to molecular charge density models: From distributed multipoles to fitted atomic charges , 1994 .

[27]  Patrick Bultinck,et al.  Correlation of delocalization indices and current-density maps in polycyclic aromatic hydrocarbons. , 2008, Chemistry.

[28]  A. Becke,et al.  Exchange-hole dipole moment and the dispersion interaction. , 2005, The Journal of chemical physics.

[29]  A. Becke,et al.  Exchange-hole dipole moment and the dispersion interaction revisited. , 2007, The Journal of chemical physics.

[30]  Keith E. Laidig,et al.  Atomic origins of molecular polarizabilities , 1996 .

[31]  J. Jellinek,et al.  Site-Specific Analysis of Dielectric Properties of Finite Systems† , 2007 .

[32]  P. Geerlings,et al.  The use of atomic intrinsic polarizabilities in the evaluation of the dispersion energy. , 2007, The Journal of chemical physics.

[33]  Denis Jacquemin,et al.  A generalized Romberg differentiation procedure for calculation of hyperpolarizabilities , 2007 .

[34]  K. Gough Theoretical analysis of molecular polarizabilities and polarizability derivatives in hydrocarbons , 1989 .

[35]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[36]  H. F. King,et al.  Ab initio calculations of polarizabilities and second hyperpolarizabilities in organic molecules with extended .pi.-electron conjugation , 1989 .

[37]  P. Geerlings,et al.  Importance of anisotropy in the evaluation of dispersion interactions , 2011 .

[38]  Nicolás Otero,et al.  Local aromaticity study of heterocycles using n-center delocalization indices: the role of aromaticity on the relative stability of position isomers , 2006 .

[39]  A. Becke,et al.  A post-Hartree-Fock model of intermolecular interactions: inclusion of higher-order corrections. , 2006, The Journal of chemical physics.

[40]  P. Senet,et al.  DFT study of polarizabilities and dipole moments of water clusters , 2005 .

[41]  C. Foot Laser cooling and trapping of atoms , 1991 .

[42]  P. Geerlings,et al.  Conceptual density functional theory. , 2003, Chemical reviews.

[43]  J. Aihara,et al.  Aromatic character of nanographene model compounds. , 2014, The journal of physical chemistry. A.

[44]  A. Becke,et al.  A density-functional model of the dispersion interaction. , 2005, The Journal of chemical physics.

[45]  P. Senet,et al.  Effect of Structural Parameters on the Polarizabilities of Methanol Clusters:  A Hirshfeld Study. , 2008, Journal of chemical theory and computation.

[46]  A. Stone,et al.  Practical schemes for distributed polarizabilities , 1993 .

[47]  Michael J. Frisch,et al.  Achieving linear scaling in exchange-correlation density functional quadratures , 1996 .

[48]  Charles A. Eckert,et al.  Prediction of limiting activity coefficients by a modified separation of cohesive energy density model and UNIFAC , 1984 .

[49]  P. Geerlings,et al.  Partitioning of higher multipole polarizabilities: numerical evaluation of transferability. , 2011, The journal of physical chemistry. A.

[50]  Charles A. Eckert,et al.  Revision of MOSCED Parameters and Extension to Solid Solubility Calculations , 2005 .

[51]  R. Carbó-Dorca,et al.  Critical thoughts on computing atom condensed Fukui functions. , 2007, The Journal of chemical physics.

[52]  P. Macchi,et al.  The polarizability of organometallic bonds , 2015 .

[53]  J. Dwyer,et al.  ANALYSIS OF MOLECULAR POLARIZABILITIES AND POLARIZABILITY DERIVATIVES IN H2, N2, F2, CO, AND HF, WITH THE THEORY OF ATOMS IN MOLECULES , 1996 .

[54]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[55]  J. Applequist,et al.  An atom dipole interaction model for molecular optical properties , 1977 .

[56]  A. Becke,et al.  A post-Hartree-Fock model of intermolecular interactions. , 2005, The Journal of chemical physics.

[57]  Alberto Vela,et al.  A relationship between the static dipole polarizability, the global softness, and the fukui function , 1990 .

[58]  E. Hückel,et al.  Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. III , 1932 .

[59]  Henry Chermette,et al.  Chemical reactivity indexes in density functional theory , 1999 .

[60]  T Verstraelen,et al.  Hirshfeld-E Partitioning: AIM Charges with an Improved Trade-off between Robustness and Accurate Electrostatics. , 2013, Journal of chemical theory and computation.

[61]  P. Senet,et al.  Effect of hydrogen bonds on polarizability of a water molecule in (H2O)(N) (N = 6, 10, 20) isomers. , 2010, Physical chemistry chemical physics : PCCP.

[62]  D. M. Bishop,et al.  Visualization of electronic and vibrational polarizabilities and hyperpolarizabilities , 2000 .

[63]  R. Wheatley,et al.  Redefining the atom: atomic charge densities produced by an iterative stockholder approach. , 2008, Chemical communications.

[64]  Erich Hckel,et al.  Quanstentheoretische Beitrge zum Benzolproblem: II. Quantentheorie der induzierten Polaritten , 1931 .

[65]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[66]  C. Alsenoy,et al.  brabo: a program for ab initio studies on large molecular systems , 1993 .

[67]  David S Sholl,et al.  Chemically Meaningful Atomic Charges That Reproduce the Electrostatic Potential in Periodic and Nonperiodic Materials. , 2010, Journal of chemical theory and computation.

[68]  P. Senet,et al.  Influence of Structure on the Polarizability of Hydrated Methane Sulfonic Acid Clusters. , 2008, Journal of chemical theory and computation.

[69]  Keith E. Laidig,et al.  PROPERTIES OF ATOMS IN MOLECULES : ATOMIC POLARIZABILITIES , 1990 .

[70]  P. Geerlings,et al.  Conceptual and computational DFT in the study of aromaticity. , 2001, Chemical reviews.

[71]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[72]  Anik Peeters,et al.  Systematic study of the parameters determining stockholder charges , 2000 .

[73]  P. Senet,et al.  A Hirshfeld partitioning of polarizabilities of water clusters. , 2006, The Journal of chemical physics.