Damage dynamics, rate laws, and failure statistics via Hamilton’s principle

We present a new model for studying the coupled-field nonlinear dynamics of systems with evolving distributed damage, focusing on the case of high-cycle fatigue. A 1D continuum model is developed using Hamilton’s principle together with Griffith energy arguments. It captures the interaction between a damage field variable, representing the density of microcracks, and macroscopic vibrational displacements. We use the perturbation method of averaging to show that the nonautonomous coupled-field model yields an autonomous Paris-Erdogan rate law as a limiting case. Finite element simulations reveal a brittle limit for which the life cycle dynamics is dominated by leading-order power-law behavior. Space-time failure statistics are explored using large ensembles of simulations starting from random initial conditions. We display typical probability distributions for failure locations and times, as well as “$$F{-}N$$F-N” curves relating load to the number of cycles to failure. A universal time scale is identified for which the failure time statistics are independent of the applied load and the damage rate constant. We show that the evolution of the macro-displacement frequency response function, as well as the statistical variability of failure times, can vary substantially with changes in system parameters, both of which have significant implications for the design of failure diagnostic and prognostic systems.

[1]  Claudia Comi,et al.  Computational modelling of gradient‐enhanced damage in quasi‐brittle materials , 1999 .

[2]  Harold A. Rothbart Mechanical design handbook , 1996 .

[3]  David Taylor,et al.  Geometrical effects in fatigue: a unifying theoretical model , 1999 .

[4]  Anindya Chatterjee,et al.  Steps towards a qualitative dynamics of damage evolution , 2000 .

[5]  Jean-Jacques Marigo,et al.  From Gradient Damage Laws to Griffith’s Theory of Crack Propagation , 2013 .

[6]  Cv Clemens Verhoosel,et al.  Phase-field models for brittle and cohesive fracture , 2014 .

[7]  Mgd Marc Geers,et al.  Gradient‐enhanced damage modelling of high‐cycle fatigue , 2000 .

[8]  Morton E. Gurtin,et al.  Continuum theory of thermally induced phase transitions based on an order parameter , 1993 .

[9]  S. Passman,et al.  Hamilton's principle in continuum mechanics , 1985 .

[10]  Francesco Costanzo,et al.  On the constitutive relations of materials with evolving microstructure due to microcracking , 2000 .

[11]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[12]  Joseph P. Cusumano,et al.  A Dynamical Systems Approach to Failure Prognosis , 2004 .

[13]  C. W. Woo,et al.  A universal physically consistent definition of material damage , 1993 .

[14]  Processes in Mechanics,et al.  IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics : proceedings of the IUTAM symposium held in Rome, Italy, 8-13 June 2003 , 2005 .

[15]  J. Murdock Perturbations: Theory and Methods , 1987 .

[16]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .

[17]  V. V. Bolotin Mechanics of Fatigue , 1999 .

[18]  Demeter G. Fertis,et al.  Mechanical And Structural Vibrations , 1995 .

[19]  Navendu S. Patil,et al.  A constructive empirical theory for metal fatigue under block cyclic loading , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  S. Suresh Fatigue of materials , 1991 .

[21]  Milan Jirásek,et al.  Nonlocal integral formulations of plasticity and damage : Survey of progress , 2002 .

[22]  F. Keulen,et al.  Generalized Continuum Theories: Application to Stress Analysis in Bone* , 2002 .

[23]  Ken Kamrin,et al.  A predictive, size-dependent continuum model for dense granular flows , 2013, Proceedings of the National Academy of Sciences.

[24]  Morton E. Gurtin,et al.  Dynamic solid-solid transitions with phase characterized by an order parameter , 1994 .

[25]  D Chelidze,et al.  Phase space warping: nonlinear time-series analysis for slowly drifting systems , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  D. Krajcinovic,et al.  Introduction to continuum damage mechanics , 1986 .

[27]  Eric Lorentz,et al.  Gradient damage models: Toward full-scale computations , 2011 .

[28]  A. Karma,et al.  Phase-field model of mode III dynamic fracture. , 2001, Physical review letters.

[29]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[30]  L. Meirovitch Principles and techniques of vibrations , 1996 .

[31]  B. Budiansky,et al.  Elastic moduli of a cracked solid , 1976 .

[32]  T. Anderson,et al.  Fracture mechanics - Fundamentals and applications , 2017 .

[33]  Jonathan S. Pitt,et al.  An Adaptive h-Refinement Algorithm for Local Damage Models , 2009, Algorithms.

[34]  Gui-Rong Liu,et al.  Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity , 2005 .

[35]  R. Hermann,et al.  Fatigue under compressive loading and residual stress , 1988 .

[36]  Jaap Schijve,et al.  FATIGUE PREDICTIONS AND SCATTER , 1994 .

[37]  Castrenze Polizzotto,et al.  Nonlocal elasticity and related variational principles , 2001 .

[38]  Joseph P. Cusumano,et al.  Phase Space Warping , 2005 .

[39]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[40]  C. Lanczos The variational principles of mechanics , 1949 .

[41]  R. M. Bowen,et al.  Introduction to Continuum Mechanics for Engineers , 1989 .

[42]  Howard E. Boyer,et al.  Atlas of stress-strain curves , 1987 .

[43]  Alain Karma,et al.  Unsteady crack motion and branching in a phase-field model of brittle fracture. , 2004, Physical Review Letters.

[44]  A. Karma,et al.  Phase-Field Simulation of Solidification , 2002 .

[45]  Tetsuo Shoji,et al.  Fatigue crack growth under compressive loading , 1998 .

[46]  A. Shahidi,et al.  Free vibration analysis of quadrilateral nanoplates based on nonlocal continuum models using the Galerkin method: the effects of small scale , 2013 .

[47]  Howard E. Boyer,et al.  Atlas of Fatigue Curves , 1986 .

[48]  Z. Bažant,et al.  Fracture and Size Effect in Concrete and Other Quasibrittle Materials , 1997 .

[49]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[50]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[51]  M. Shinozuka,et al.  Simulation of Stochastic Processes by Spectral Representation , 1991 .

[52]  E. Orowan ENERGY CRITERIA OF FRACTURE , 1954 .

[53]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[54]  H. Matthies,et al.  Uncertainties in probabilistic numerical analysis of structures and solids-Stochastic finite elements , 1997 .

[55]  A. Chatterjee,et al.  A Dynamical Systems Approach to Damage Evolution Tracking, Part 1: Description and Experimental Application , 2002 .

[56]  Irving H. Shames,et al.  Solid mechanics: a variational approach , 1973 .

[57]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .