Multi-label bird classification using an ensemble classifier with simple features

For the Multi-label Bird Species Classification task in NIPS 2013, we design an ensemble classifier using simple audio features extracted from the given audio clips. The main difference of our approach is that we do not segment the audio or use local features and still achieve comparable results to the top teams of the challenge utilizing complex engineered features.

[1]  Xiaoli Z. Fern,et al.  Acoustic classification of multiple simultaneous bird species: a multi-instance multi-label approach. , 2012, The Journal of the Acoustical Society of America.

[2]  Hervé Glotin,et al.  Clusterized Mel Filter Cepstral Coefficients and Support Vector Machines for Bird Song Identification , 2014 .

[3]  Grigorios Tsoumakas,et al.  The 9th annual MLSP competition: New methods for acoustic classification of multiple simultaneous bird species in a noisy environment , 2013, 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP).

[4]  Lior Rokach,et al.  Ensemble-based classifiers , 2010, Artificial Intelligence Review.

[5]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[6]  Mario Lasseck Bird Song Classification in Field Recordings: Winning Solution for NIPS4B 2013 Competition * , 2013 .

[7]  Dan Stowell,et al.  Detection and classification of acoustic scenes and events: An IEEE AASP challenge , 2013, 2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.

[8]  Grigorios Tsoumakas,et al.  Multi-Label Classification: An Overview , 2007, Int. J. Data Warehous. Min..

[9]  Dong-Hyun Lee,et al.  Learning multi-labeled bioacoustic samples with an unsupervised feature learning approach , 2013 .

[10]  Zhixin Chen,et al.  Semi-automatic classification of bird vocalizations using spectral peak tracks. , 2006, The Journal of the Acoustical Society of America.

[11]  D. Opitz,et al.  Popular Ensemble Methods: An Empirical Study , 1999, J. Artif. Intell. Res..

[12]  Dan Stowell,et al.  Detection and Classification of Acoustic Scenes and Events , 2015, IEEE Transactions on Multimedia.

[13]  Seppo Ilmari Fagerlund,et al.  Bird Species Recognition Using Support Vector Machines , 2007, EURASIP J. Adv. Signal Process..

[14]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[15]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[16]  Gábor Fodor The Ninth Annual MLSP Competition: First place , 2013, 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP).

[17]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..