Understanding MOSFET mismatch for analog design

This paper addresses misconceptions about MOSFET mismatch for analog design. V/sub t/ mismatch does not follow a simplistic 1/(/spl radic/area) law, especially for wide/short and narrow/long devices, which are common geometries in analog circuits. Further, Vt and gain factor are not appropriate parameters for modeling mismatch. A physically based mismatch model can be used to obtain dramatic improvements in the prediction of mismatch. This model is applied to MOSFET current mirrors to show some non-obvious effects over bias, geometry, and multiple unit devices.

[1]  C. C. McAndrew,et al.  A comprehensive vertical BJT mismatch model , 1998, Proceedings of the 1998 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.98CH36198).

[2]  Gabor C. Temes,et al.  Random error effects in matched MOS capacitors and current sources , 1984 .

[3]  M. Vertregt,et al.  Test structures for investigation of metal coverage effects on MOSFET matching , 1997, 1997 IEEE International Conference on Microelectronic Test Structures Proceedings.

[4]  K. R. Lakshmikumar,et al.  Characterisation and modeling of mismatch in MOS transistors for precision analog design , 1986 .

[5]  Juin J. Liou,et al.  SPICE modeling and quick estimation of MOSFET mismatch based on BSIM3 model and parametric tests , 2001 .

[6]  T. Serrano-Gotarredona,et al.  A new five-parameter MOS transistor mismatch model , 2000, IEEE Electron Device Letters.

[7]  Alan Mathewson,et al.  Characterizing the mismatch of submicron MOS transistors , 1996, Proceedings of International Conference on Microelectronic Test Structures.

[8]  Marcel J. M. Pelgrom,et al.  Matching properties of MOS transistors , 1989 .

[9]  M. Bolt,et al.  Matching properties of MOS transistors and delay line chains with self-aligned source/drain contacts , 1996, Proceedings of International Conference on Microelectronic Test Structures.

[10]  A.H. Montree,et al.  Effects of gate depletion and boron penetration on matching of deep submicron CMOS transistors , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[11]  Carl Kyono,et al.  A cost-effective 0.25 /spl mu/m L/sub eff/ BiCMOS technology featuring graded-channel CMOS (GCMOS) and a quasi-self-aligned (QSA) NPN for RF wireless applications , 2000, Proceedings of the 2000 BIPOLAR/BiCMOS Circuits and Technology Meeting (Cat. No.00CH37124).

[12]  K. Bult,et al.  An embedded 240-mW 10-b 50-MS/s CMOS ADC in 1-mm2 , 1997, IEEE J. Solid State Circuits.

[13]  Dileep Divekar FET modeling for circuit simulation , 1988 .

[14]  P. G. Drennan Diffused resistor mismatch modeling and characterization , 1999, Proceedings of the 1999 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.99CH37024).

[15]  Willy Sansen,et al.  An easy-to-use mismatch model for the MOS transistor , 2002, IEEE J. Solid State Circuits.

[16]  C.C. McAndrew,et al.  A comprehensive MOSFET mismatch model , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[17]  P. Stolk,et al.  Impact of ion implantation statistics on V/sub T/ fluctuations in MOSFETs: comparison between decaborane and boron channel implants , 2000, 2000 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.00CH37104).

[18]  P G Drennan,et al.  Unified Statistical Modeling for Circuit Simulation , 2002 .

[19]  P. Welch,et al.  A 0.18 /spl mu/m SiGe:C RFBiCMOS technology for wireless and gigabit optical communication applications , 2001, Proceedings of the 2001 BIPOLAR/BiCMOS Circuits and Technology Meeting (Cat. No.01CH37212).

[20]  G. Temes,et al.  Random errors in MOS capacitors , 1982 .

[21]  R. Palla,et al.  Comparison between matching parameters and fluctuations at the wafer level , 2002, Proceedings of the 2002 International Conference on Microelectronic Test Structures, 2002. ICMTS 2002..

[22]  Shyh-Chyi Wong,et al.  A CMOS mismatch model and scaling effects , 1997, IEEE Electron Device Letters.