Optimal Analysis of Best Fit Bin Packing

In early seventies it was shown that the asymptotic approximation ratio of BestFit bin packing is equal to 1.7. We prove that also the absolute approximation ratio for BestFit bin packing is exactly 1.7, improving the previous bound of 1.75. This means that if the optimum needs Opt bins, BestFit always uses at most \(\lfloor1.7\cdot\) OPT \(\rfloor\) bins. Furthermore we show matching lower bounds for all values of Opt, i.e., we give instances on which BestFit uses exactly \(\lfloor1.7\cdot\) OPT \(\rfloor\) bins. Thus we completely settle the worst-case complexity of BestFit bin packing after more than 40 years of its study.

[1]  Ronald L. Graham,et al.  Bounds for certain multiprocessing anomalies , 1966 .

[2]  D. Simchi-Levi New worst‐case results for the bin‐packing problem , 1994 .

[3]  H. H. Johnson Optimum Time for Multiplication on a Digital Computer , 1961, Comput. J..

[4]  David S. Johnson,et al.  Near-optimal bin packing algorithms , 1973 .

[5]  Jirí Sgall,et al.  First Fit bin packing: A tight analysis , 2013, STACS.

[6]  Jeffrey D. Ullman,et al.  The performance of a memory allocation algorithm , 1971 .

[7]  Jirí Sgall,et al.  A New Analysis of Best Fit Bin Packing , 2012, FUN.

[8]  Jeffrey D. Ullman,et al.  Worst-case analysis of memory allocation algorithms , 1972, STOC.

[9]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[10]  Binzhou Xia,et al.  Tighter bounds of the First Fit algorithm for the bin-packing problem , 2010, Discret. Appl. Math..

[11]  Jeffrey D. Ullman,et al.  L worst-case performance bounds for rumple one-dimensional packing algorithms siam j , 1974 .

[12]  Ronald L. Graham,et al.  Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.

[13]  David S. Johnson,et al.  Fast Algorithms for Bin Packing , 1974, J. Comput. Syst. Sci..

[14]  Leah Epstein,et al.  On the absolute approximation ratio for First Fit and related results , 2012, Discret. Appl. Math..

[15]  Andrew Chi-Chih Yao,et al.  Resource Constrained Scheduling as Generalized Bin Packing , 1976, J. Comb. Theory A.

[16]  David P. Williamson,et al.  The Design of Approximation Algorithms , 2011 .

[17]  Edward G. Coffman,et al.  Approximation algorithms for bin packing: a survey , 1996 .