Quot-scheme limit of Fubini-Study metrics and its applications to balanced metrics

We present some results that complement our prequels [28, 29] on holomorphic vector bundles. We apply the method of the Quotscheme limit of Fubini–Study metrics developed therein to provide a generalisation to the singular case of the result originally obtained by X.W. Wang for the smooth case, which states that the existence of balanced metrics is equivalent to the Gieseker stability of the vector bundle. We also prove that the Bergman 1-parameter subgroups form subgeodesics in the space of hermitian metrics. This paper also contains a review of techniques developed in [28,29] and how they correspond to their counterparts developed in the study of the Yau–Tian–Donaldson conjecture.

[1]  Karen K. Uhlenbeck,et al.  On the existence of hermitian‐yang‐mills connections in stable vector bundles , 1986 .

[2]  M. Lübke Stability of Einstein-Hermitian vector bundles , 1983 .

[3]  Reza Seyyedali Numerical Algorithm for Finding Balanced Metrics on Vector Bundles , 2008, 0804.4005.

[4]  M. Jonsson,et al.  A variational approach to the Yau–Tian–Donaldson conjecture , 2015, Journal of the American Mathematical Society.

[5]  B. Berndtsson,et al.  A direct approach to Bergman kernel asymptotics for positive line bundles , 2008 .

[6]  Hua Luo Geometric criterion for Gieseker-Mumford stability of polarized manifolds , 1998 .

[7]  S. Donaldson Scalar Curvature and Projective Embeddings, I , 2001 .

[8]  Y. Odaka On the moduli of Kähler-Einstein Fano manifolds , 2012, 1211.4833.

[9]  Philippe Eyssidieux,et al.  Singular Kähler-Einstein metrics , 2006, math/0603431.

[10]  Julien Keller,et al.  Quantization of Donaldson’s heat flow over projective manifolds , 2014, 1411.2716.

[11]  Alexander Grothendieck,et al.  Techniques de construction et théorèmes d'existence en géométrie algébrique IV : les schémas de Hilbert , 1961 .

[12]  J. Fine Calabi flow and projective embeddings , 2008, 0811.0155.

[13]  M. Jonsson,et al.  Uniform K-stability and asymptotics of energy functionals in Kähler geometry , 2016, Journal of the European Mathematical Society.

[14]  Xiaowei Wang Balance point and Stability of Vector Bundles Over a Projective Manifold , 2002 .

[15]  On the proper moduli spaces of smoothable Kähler–Einstein Fano varieties , 2014, Duke Mathematical Journal.

[16]  S. Donaldson Anti Self‐Dual Yang‐Mills Connections Over Complex Algebraic Surfaces and Stable Vector Bundles , 1985 .

[17]  B. Berndtsson,et al.  Convexity of the K-energy on the space of Kahler metrics and uniqueness of extremal metrics , 2014, 1405.0401.

[18]  DELIGNE PAIRINGS AND THE KNUDSEN-MUMFORD EXPANSION , 2006, math/0612555.

[19]  Stephen S. Shatz,et al.  The decomposition and specialization of algebraic families of vector bundles , 1977 .

[20]  X. Ma,et al.  Holomorphic Morse Inequalities and Bergman Kernels , 2007 .

[21]  Some numerical results in complex differential geometry , 2005, math/0512625.

[22]  M. Jonsson,et al.  Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs , 2015, 1504.06568.

[23]  G. Tian Kähler-Einstein metrics with positive scalar curvature , 1997 .

[24]  D. Catlin The Bergman Kernel and a Theorem of Tian , 1999 .

[25]  R. Berman K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics , 2012, 1205.6214.

[26]  K. Maurin Differential Geometry of Holomorphic Vector Bundles over Compact Riemann Surfaces and Kähler manifolds. Stable Vector Bundles, Hermite-Einstein Connections, and their Moduli Spaces , 1997 .

[27]  L. Takhtajan Explicit computation of the Chern character forms , 2014, 1402.6279.

[28]  D. Huybrechts,et al.  The geometry of moduli spaces of sheaves , 1997 .

[29]  D. Phong,et al.  Stability, energy functionals, and Kahler-Einstein metrics , 2002, math/0203254.

[30]  Shou-wu Zhang Heights and reductions of semi-stable varieties , 1996 .

[31]  J. Ross,et al.  Quantization of Hitchin's equations for Higgs Bundles I , 2016, 1601.04960.

[32]  R. Elkik Métriques sur les fibrés d’intersection , 1990 .

[33]  S. Boucksom VARIATIONAL AND NON-ARCHIMEDEAN ASPECTS OF THE YAU–TIAN–DONALDSON CONJECTURE , 2018, Proceedings of the International Congress of Mathematicians (ICM 2018).

[34]  Notes on GIT and symplectic reduction for bundles and varieties , 2005, math/0512411.

[35]  G'abor Sz'ekelyhidi The partial $C^0$-estimate along the continuity method , 2013, 1310.8471.

[36]  O. Forster,et al.  Bounding cohomology groups of vector bundles on ℙn , 1980 .

[37]  A. Langer Moduli spaces and Castelnuovo-Mumford regularity of sheaves on surfaces , 2006 .

[38]  Julien Keller,et al.  About J-flow, J-balanced metrics, uniform J-stability and K-stability , 2017, 1705.02000.

[39]  Leila Schneps,et al.  Hodge theory and complex algebraic geometry , 2002 .

[40]  Xiaowei Wang Canonical metrics on stable vector bundles , 2005 .

[41]  S. Donaldson Scalar Curvature and Stability of Toric Varieties , 2002 .

[42]  S. Boucksom,et al.  Regularizing Properties of the Kähler–Ricci Flow , 2013 .

[43]  Julien Keller,et al.  Quot-scheme limit of Fubini-Study metrics and Donaldson's functional for bundles , 2019 .

[44]  J. Ross,et al.  Balanced metrics on twisted Higgs bundles , 2014, 1401.7108.

[45]  S. Yau On The Ricci Curvature of a Compact Kahler Manifold and the Complex Monge-Ampere Equation, I* , 1978 .

[46]  Adam Jacob Existence of approximate Hermitian-Einstein structures on semi-stable bundles , 2010, 1012.1888.

[47]  R. Dervan Uniform stability of twisted constant scalar curvature K\"ahler metrics , 2014, 1412.0648.

[48]  S. Donaldson,et al.  A new proof of a theorem of Narasimhan and Seshadri , 1983 .

[49]  Numerical solution to the hermitian Yang-Mills equation on the Fermat quintic , 2006, hep-th/0606261.

[50]  Xiuxiong Chen The Space of Kähler Metrics , 2000 .