Encoding Adjective Scales for Fine-grained Resources

We propose an automatic approach towards determining the relative location of adjectives on a common scale based on their strength. We focus on adjectives expressing different degrees of goodness occurring in French product (perfumes) reviews. Using morphosyntactic patterns, we extract from the reviews short phrases consisting of a noun that encodes a particular aspect of the perfume and an adjective modifying that noun. We then associate each such n-gram with the corresponding product aspect and its related star rating. Next, based on the star scores, we generate adjective scales reflecting the relative strength of specific adjectives associated with a shared attribute of the product. An automatic ordering of the adjectives “correct” (correct), “sympa” (nice), “bon” (good) and “excellent” (excellent) according to their score in our resource is consistent with an intuitive scale based on human judgments. Our long-term objective is to generate different adjective scales in an empirical manner, which could allow the enrichment of lexical resources.