THE COLLISIONAL EVOLUTION OF DEBRIS DISKS

We explore the collisional decay of disk mass and infrared emission in debris disks. With models, we show that the rate of the decay varies throughout the evolution of the disks, increasing its rate up to a certain point, which is followed by a leveling off to a slower value. The total disk mass falls off ∝t−0.35 at its fastest point (where t is time) for our reference model, while the dust mass and its proxy—the infrared excess emission—fades significantly faster (∝t−0.8). These later level off to a decay rate of Mtot(t)∝t−0.08 and Mdust(t) or Lir(t)∝t−0.6. This is slower than the ∝t−1 decay given for all three system parameters by traditional analytic models. We also compile an extensive catalog of Spitzer and Herschel 24, 70, and 100 μm observations. Assuming a log-normal distribution of initial disk masses, we generate model population decay curves for the fraction of stars harboring debris disks detected at 24 μm. We also model the distribution of measured excesses at the far-IR wavelengths (70–100 μm) at certain age regimes. We show general agreement at 24 μm between the decay of our numerical collisional population synthesis model and observations up to a Gyr. We associate offsets above a Gyr to stochastic events in a few select systems. We cannot fit the decay in the far-infrared convincingly with grain strength properties appropriate for silicates, but those of water ice give fits more consistent with the observations (other relatively weak grain materials would presumably also be successful). The oldest disks have a higher incidence of large excesses than predicted by the model; again, a plausible explanation is very late phases of high dynamical activity around a small number of stars. Finally, we constrain the variables of our numerical model by comparing the evolutionary trends generated from the exploration of the full parameter space to observations. Amongst other results, we show that erosive collisions are dominant in setting the timescale of the evolution and that planetesimals on the order of 100 km in diameter are necessary in the cascades for our population synthesis models to reproduce the observations.

[1]  G. Rieke,et al.  Resolved debris discs around A stars in the Herschel DEBRIS survey , 2012, 1210.0547.

[2]  G. Rieke,et al.  THE DEBRIS DISK AROUND γ DORADUS RESOLVED WITH HERSCHEL , 2012, 1212.1450.

[3]  G. Rieke,et al.  Herschel imaging of 61 Vir: implications for the prevalence of debris in low-mass planetary systems , 2012, 1206.2370.

[4]  M. Barlow,et al.  UvA-DARE ( Digital Academic Repository ) Herschel images of Fomalhaut : an extrasolar Kuiper belt at the height of its dynamical activity , 2012 .

[5]  L. Vican,et al.  AGE DETERMINATION FOR 346 NEARBY STARS IN THE HERSCHEL DEBRIS SURVEY , 2012, 1203.1966.

[6]  G. Rieke,et al.  THE INCIDENCE OF DEBRIS DISKS AT 24 μm AND 670 Myr , 2012, 1203.0027.

[7]  P. Kalas,et al.  99 Herculis: host to a circumbinary polar‐ring debris disc , 2012, 1201.1911.

[8]  G. Rieke,et al.  MODELING COLLISIONAL CASCADES IN DEBRIS DISKS: STEEP DUST-SIZE DISTRIBUTIONS , 2011, 1111.0296.

[9]  D. Psaltis,et al.  MODELING COLLISIONAL CASCADES IN DEBRIS DISKS: THE NUMERICAL METHOD , 2011, 1110.5929.

[10]  S. Wolf,et al.  Modelling the huge, Herschel-resolved debris ring around HD 207129 , 2012 .

[11]  S. Wolf,et al.  Herschel discovery of a new class of cold, faint debris discs , 2011, 1110.4826.

[12]  M. C. Wyatt,et al.  SPITZER EVIDENCE FOR A LATE-HEAVY BOMBARDMENT AND THE FORMATION OF UREILITES IN η CORVI At ∼1 Gyr , 2011, 1110.4172.

[13]  Alycia J. Weinberger,et al.  A MAGELLAN MIKE AND SPITZER MIPS STUDY OF 1.5–1.0 M☉ STARS IN SCORPIUS-CENTAURUS , 2011 .

[14]  S. Wolf,et al.  A Herschel resolved far-infrared dust ring around HD 207129 , 2011, 1104.3560.

[15]  K. Stapelfeldt,et al.  COMMON WARM DUST TEMPERATURES AROUND MAIN-SEQUENCE STARS , 2011 .

[16]  C. Clarke,et al.  Debris disk size distributions: steady state collisional evolution with Poynting-Robertson drag and other loss processes , 2011, 1103.5499.

[17]  F. Murgas,et al.  Chromospheric activities and kinematics for solar type dwarfs and subgiants : analysis of the activity distribution and the AVR , 2011, 1103.0584.

[18]  C. Dominik,et al.  The thermal structure and the location of the snow line in the protosolar nebula: axisymmetric models with full 3-D radiative transfer , 2010, 1012.0727.

[19]  D. Bayliss,et al.  STRUCTURE AND EVOLUTION OF DEBRIS DISKS AROUND F-TYPE STARS. I. OBSERVATIONS, DATABASE, AND BASIC EVOLUTIONARY ASPECTS , 2010, 1012.3631.

[20]  Howard Isaacson,et al.  CHROMOSPHERIC ACTIVITY AND JITTER MEASUREMENTS FOR 2630 STARS ON THE CALIFORNIA PLANET SEARCH , 2010, 1009.2301.

[21]  T. Nakajima,et al.  POTENTIAL MEMBERS OF STELLAR KINEMATIC GROUPS WITHIN 30 pc OF THE SUN , 2010 .

[22]  Grant Kennedy,et al.  Resolving debris discs in the far-infrared: Early highlights from the DEBRIS survey , 2010, 1005.5147.

[23]  I. Ribas,et al.  Cold DUst around NEarby Stars (DUNES). First results A resolved exo-Kuiper belt around the solar-like star zeta(2) Ret , 2010, 1005.3151.

[24]  G. Rieke,et al.  DEBRIS DISKS AROUND SOLAR-TYPE STARS: OBSERVATIONS OF THE PLEIADES WITH THE SPITZER SPACE TELESCOPE , 2010, 1003.0351.

[25]  Universidad Complutense de Madrid,et al.  Chromospheric activity and rotation of FGK stars in the solar vicinity - An estimation of the radial velocity jitter , 2010, 1002.4391.

[26]  M. Wyatt,et al.  Are debris discs self-stirred? , 2010, 1002.3469.

[27]  Cambridge,et al.  Debris disc stirring by secular perturbations from giant planets , 2009, 0907.1389.

[28]  G. Rieke,et al.  SPITZER/IRAC–MIPS SURVEY OF NGC 2451A AND B: DEBRIS DISKS AT 50–80 MILLION YEARS , 2009, 0904.2608.

[29]  Peter Plavchan,et al.  NEW DEBRIS DISKS AROUND YOUNG, LOW-MASS STARS DISCOVERED WITH THE SPITZER SPACE TELESCOPE , 2009, 0904.0819.

[30]  Hubble Fellow,et al.  THE LOW LEVEL OF DEBRIS DISK ACTIVITY AT THE TIME OF THE LATE HEAVY BOMBARDMENT: A SPITZER STUDY OF PRAESEPE , 2009, The Astrophysical Journal.

[31]  P. Kalas,et al.  FOMALHAUT'S DEBRIS DISK AND PLANET: CONSTRAINING THE MASS OF FOMALHAUT B FROM DISK MORPHOLOGY , 2008, 0811.1985.

[32]  S. Wolf,et al.  FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROPERTIES OF DEBRIS DUST AROUND SOLAR-TYPE STARS , 2008, 0810.1003.

[33]  J. Schmitt,et al.  Ca II HK emission in rapidly rotating stars. Evidence for an onset of the solar-type dynamo , 2009 .

[34]  M. Wyatt,et al.  Evolution of Debris Disks , 2008 .

[35]  L. Hillenbrand,et al.  Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics , 2008, 0807.1686.

[36]  S. Kenyon,et al.  Variations on Debris Disks: Icy Planet Formation at 30-150 AU for 1-3 M☉ Main-Sequence Stars , 2008, 0807.1134.

[37]  P. Mauas,et al.  Mg II h + k emission lines as stellar activity indicators of main sequence F-K stars , 2008, 0804.1101.

[38]  K. Stapelfeldt,et al.  Spitzer MIPS Observations of Stars in the β Pictoris Moving Group , 2008, 0803.1674.

[39]  A. Nakamura,et al.  Measurements of target compressive and tensile strength for application to impact cratering on ice‐silicate mixtures , 2008 .

[40]  K. Y. L. Su,et al.  Debris Disks around Sun-like Stars , 2007, 0710.5498.

[41]  T. Löhne,et al.  Long-Term Collisional Evolution of Debris Disks , 2007, 0710.4294.

[42]  G. Rieke,et al.  Debris Disks in NGC 2547 , 2007, 0707.2827.

[43]  J. Augereau,et al.  Collisional processes and size distribution in spatially extended debris discs , 2007, 0706.0344.

[44]  S. Barnes Accepted for publication in The Astrophysical Journal Ages for illustrative field stars using gyrochronology: viability, limitations and errors , 2022 .

[45]  L. Hillenbrand,et al.  High-Dispersion Optical Spectra of Nearby Stars Younger Than the Sun , 2007, 0706.0542.

[46]  Wm. A. Wheaton,et al.  Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. II. 70 μm Imaging , 2007, 0704.2196.

[47]  D. Padgett,et al.  Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. I. The Stellar Calibrator Sample and the 24 μm Calibration , 2007, 0704.2195.

[48]  R. Smith,et al.  Steady State Evolution of Debris Disks around A Stars , 2007, astro-ph/0703608.

[49]  G. Rieke,et al.  Spitzer 24 μm Observations of Open Cluster IC 2391 and Debris Disk Evolution of FGK Stars , 2006, astro-ph/0609141.

[50]  D. Breitschwerdt,et al.  The search for the origin of the Local Bubble redivivus , 2006, astro-ph/0609227.

[51]  G. Rieke,et al.  Debris Disk Evolution around A Stars , 2006, astro-ph/0608563.

[52]  G. Marcy,et al.  An activity catalogue of southern stars , 2006, astro-ph/0607336.

[53]  Michel Mayor,et al.  An extrasolar planetary system with three Neptune-mass planets , 2006, Nature.

[54]  D. Apai,et al.  Nearby Debris Disk Systems with High Fractional Luminosity Reconsidered , 2006, astro-ph/0603729.

[55]  G. Rieke,et al.  Frequency of Debris Disks around Solar-Type Stars: First Results from a Spitzer MIPS Survey , 2005, astro-ph/0509199.

[56]  B. Zuckerman,et al.  Extreme collisions between planetesimals as the origin of warm dust around a Sun-like star , 2005, Nature.

[57]  Jonathan P. Williams,et al.  Circumstellar Dust Disks in Taurus-Auriga: The Submillimeter Perspective , 2005, astro-ph/0506187.

[58]  S. Wolf,et al.  Signatures of Planets in Spatially Unresolved Debris Disks , 2005, astro-ph/0506669.

[59]  David E. Trilling,et al.  Decay of Planetary Debris Disks , 2005 .

[60]  K. Y. L. Su,et al.  PLANETS AND INFRARED EXCESSES: PRELIMINARY RESULTS FROM A SPITZER MIPS SURVEY OF SOLAR-TYPE STARS , 2005 .

[61]  John R. Stauffer,et al.  Spectroscopy of Very Low Mass Stars and Brown Dwarfs in IC 2391: Lithium Depletion and Hα Emission , 2004 .

[62]  A Submillimeter Search of Nearby Young Stars for Cold Dust: Discovery of Debris Disks around Two Low-Mass Stars , 2004, astro-ph/0403131.

[63]  Jason T. Wright,et al.  Chromospheric Ca II Emission in Nearby F, G, K, and M Stars , 2004, astro-ph/0402582.

[64]  D. Lin,et al.  Toward a Deterministic Model of Planetary Formation. I. A Desert in the Mass and Semimajor Axis Distributions of Extrasolar Planets , 2003, astro-ph/0312144.

[65]  Marc J. Kuchner,et al.  The Dynamical Influence of a Planet at Semimajor Axis 3.4 A on the Dust around Epsilon Eridani , 2004 .

[66]  J. Schmitt,et al.  NEXXUS: A comprehensive ROSAT survey of coronal X-ray emission among nearby solar-like stars , 2003, astro-ph/0308510.

[67]  J. Greaves,et al.  Some anomalies in the occurrence of debris discs around main-sequence A and G stars , 2003 .

[68]  C. Dominik,et al.  Age Dependence of the Vega Phenomenon: Theory , 2003, astro-ph/0308364.

[69]  R. Garrison,et al.  Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 Parsecs: The Northern Sample. I. , 2003, astro-ph/0308182.

[70]  R. Greenberg,et al.  Steady-State Size Distributions for Collisional Populations: Analytical Solution with Size-Dependent Strength , 2003, 1407.3307.

[71]  H. Beust,et al.  Dust production from collisions in extrasolar planetary systems. The inner beta Pictoris disc , 2003, astro-ph/0307167.

[72]  J. H. M. M. Schmitt,et al.  An X-ray study of the open clusters NGC 2451 A and B , 2003 .

[73]  Nikolai Piskunov,et al.  Modelling of Stellar Atmospheres , 2003 .

[74]  Marc J. Kuchner,et al.  The Geometry of Resonant Signatures in Debris Disks with Planets , 2002, astro-ph/0209261.

[75]  B. Bazzanella,et al.  The Origin of the β Pictoris Moving Group , 2002 .

[76]  A. C. Quillen,et al.  Structure in the Eridani Dusty Disk Caused by Mean Motion Resonances with a 0.3 Eccentricity Planet at Periastron , 2002 .

[77]  Anthony G. A. Brown,et al.  Exploring the Full Stellar Population of the Upper Scorpius OB Association , 2002 .

[78]  James Liebert,et al.  Post-T Tauri Stars in the Nearest OB Association , 2002, astro-ph/0205417.

[79]  Alan P. Boss,et al.  Gas Giant Protoplanet Formation: Disk Instability Models with Thermodynamics and Radiative Transfer , 2001 .

[80]  E. Grün,et al.  Impacts into Ice–Silicate Mixtures: Ejecta Mass and Size Distributions , 2001 .

[81]  E. Grün,et al.  Impacts into Ice–Silicate Mixtures: Crater Morphologies, Volumes, Depth-to-Diameter Ratios, and Yield , 2001 .

[82]  Chromospheric activity, lithium and radial velocities of single late-type stars possible members of young moving groups , 2001, astro-ph/0110066.

[83]  Elizabeth A. Lada,et al.  Disk Frequencies and Lifetimes in Young Clusters , 2001, astro-ph/0104347.

[84]  B. Zuckerman,et al.  Dusty Debris around Solar-Type Stars: Temporal Disk Evolution , 2001, astro-ph/0103185.

[85]  J. Carpenter Color Transformations for the 2MASS Second Incremental Data Release , 2001, astro-ph/0101463.

[86]  I. Song,et al.  Ages of A-Type Vega-like Stars from uvbyβ Photometry , 2000, astro-ph/0010102.

[87]  Gravitational Stirring in Planetary Debris Disks , 2000, astro-ph/0009185.

[88]  W. Benz,et al.  Catastrophic Disruptions Revisited , 1999, astro-ph/9907117.

[89]  J. Liou,et al.  Signatures of the Giant Planets Imprinted on the Edgeworth-Kuiper Belt Dust Disk , 1999 .

[90]  J. Kirkpatrick,et al.  Keck Spectra of Pleiades Brown Dwarf Candidates and a Precise Determination of the Lithium Depletion Edge in the Pleiades , 1998, astro-ph/9804005.

[91]  H. Rocha-Pinto,et al.  Metallicity effects on the chromospheric activity–age relation for late‐type dwarfs , 1998, astro-ph/9803219.

[92]  Alan P. Boss,et al.  Giant Planet Formation by Gravitational Instability , 1997 .

[93]  Sallie L. Baliunas,et al.  A Survey of CA II H and K Chromospheric Emission in Southern Solar-Type Stars , 1996 .

[94]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[95]  O. C. Wilson,et al.  Ca II H and K measurements made at Mount Wilson Observatory, 1966-1983 , 1991 .

[96]  Eileen V. Ryan,et al.  On collisional disruption - Experimental results and scaling laws , 1990 .

[97]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .