Dimension Theory for Ordered Sets

In 1930, E. Szpilrajn proved that any order relation on a set X can be extended to a linear order on X. It also follows that any order relation is the intersection of its linear extensions. B. Dushnik and E.W. Miller later defined the dimension of an ordered set P = 〈X;≤〉 to be the minimum number of linear extensions whose intersection is the ordering ≤.

[1]  H. Komm,et al.  On the Dimension of Partially Ordered Sets , 1948 .

[2]  R. P. Dilworth,et al.  A DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS , 1950 .

[3]  Ivan Rival Lattices with Doubly Irreducible Elements , 1974, Canadian Mathematical Bulletin.

[4]  Jürgen Schmidt,et al.  Zur Kennzeichnung der Dedekind-MacNeilleschen HÜlle einer geordneten HÜlle , 1956 .

[5]  J. C. Arditti,et al.  The Dimension of Finite and Infinite Comparability Graphs , 1980 .

[6]  Ivan Rival,et al.  Crowns, Fences, and Dismantlable Lattices , 1974, Canadian Journal of Mathematics.

[7]  Ivan Rival,et al.  Planar Sublattices of a Free Lattice. I , 1978, Canadian Journal of Mathematics.

[8]  Ben Dushnik,et al.  Partially Ordered Sets , 1941 .

[9]  László Babai,et al.  Dimension and automorphism groups of lattices , 1981 .

[10]  C. Kuratowski Sur le problème des courbes gauches en Topologie , 1930 .

[11]  David Kelly The 3-Irreducible Partially Ordered Sets , 1977, Canadian Journal of Mathematics.

[12]  P. Gilmore,et al.  A Characterization of Comparability Graphs and of Interval Graphs , 1964, Canadian Journal of Mathematics.

[13]  Robert J. Kimble Extermal problems in dimension theory for partially ordered sets , 1973 .

[14]  T. Hiraguchi On the Dimension of Partially Ordered Sets. , 1951 .

[15]  M. Ajtai On a class of finite lattices , 1973 .

[16]  W. Trotter,et al.  Inequalities in dimension theory for posets , 1975 .

[17]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[18]  Bernhard Banaschewski,et al.  Hüllensysteme und Erweiterung von Quasi‐Ordnungen , 1956 .

[19]  William T. Trotter,et al.  A Bound on the Dimension of Interval Orders , 1976, J. Comb. Theory, Ser. A.

[20]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[21]  Ivan Rival,et al.  Combinatorial inequalities for semimodular lattices of breadth two , 1976 .

[22]  I. Rabinovitch,et al.  An Upper Bound on the "Dimension of Interval Orders" , 1978, J. Comb. Theory, Ser. A.

[23]  William T. Trotter,et al.  A Generalization of Hiraguchi's: Inequality for Posets , 1976, J. Comb. Theory, Ser. A.

[24]  R. Wille Note on the order dimension of partially ordered sets , 1975 .

[25]  William T. Trotter,et al.  Characterization problems for graphs, partially ordered sets, lattices, and families of sets , 1976, Discret. Math..

[26]  Bruno Leclerc,et al.  Arbres et dimension des ordres , 1976, Discret. Math..

[27]  William T. Trotter,et al.  Some theorems on graphs and posets , 1976, Discret. Math..

[28]  William T. Trotter,et al.  Maximal dimensional partially ordered sets III: a characterization of Hiraguchi's inequality for interval dimension , 1976, Discret. Math..

[29]  William T. Trotter,et al.  A note on Dilworth’s embedding theorem , 1975 .

[30]  M. Yannakakis The Complexity of the Partial Order Dimension Problem , 1982 .

[31]  Stephen B. Maurer,et al.  Large minimal realizers of a partial order , 1977 .

[32]  László Lovász,et al.  On a product dimension of graphs , 1980, J. Comb. Theory, Ser. B.

[33]  P. Fishburn Intransitive indifference with unequal indifference intervals , 1970 .

[34]  David Kelly,et al.  Certain Partially Ordered Sets of Dimension Three , 1975, J. Comb. Theory, Ser. A.

[35]  C. R. Platt,et al.  Planar lattices and planar graphs , 1976, J. Comb. Theory, Ser. B.

[36]  Kenneth P. Bogart,et al.  Maximal dimensional partially ordered sets I. Hiraguchi's theorem , 1973, Discret. Math..

[37]  William T. Trotter,et al.  On the complexity of posets , 1976, Discret. Math..

[38]  Ben Dushnik Concerning a certain set of arrangements , 1950 .

[39]  R. Wille On modular lattices of order dimension two , 1974 .

[40]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[41]  William T. Trotter,et al.  Maximal dimensional partially ordered sets II. characterization of 2n-element posets with dimension n , 1973, Discret. Math..

[42]  Egbert Harzheim,et al.  Ein Endlichkeitssatz über die Dimension teilweise geordneter Mengen , 1970 .

[43]  Peter C. Fishburn,et al.  Partial orders of dimension 2 , 1972, Networks.

[44]  William T. Trotter,et al.  Dimension of the crown Skn , 1974, Discret. Math..

[45]  Martin Aigner,et al.  Uniquely Partially Orderable Graphs , 1971 .

[46]  J. Spencer Minimal scrambling sets of simple orders , 1972 .

[47]  R. Gysin Dimension transitiv orientierbarer graphen , 1977 .

[48]  William T. Trotter,et al.  The dimension of a comparability graph , 1976 .

[49]  E. Szpilrajn Sur l'extension de l'ordre partiel , 1930 .

[50]  William T. Trotter,et al.  Irreducible Posets with Large Height Exist , 1974, J. Comb. Theory, Ser. A.

[51]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[52]  L. N. Shevrin,et al.  To the undimmed memory of petr Grigor'evich Kontorovich: Partially ordered sets and their comparability graphs , 1970 .

[53]  William T. Trotter,et al.  Embedding finite posets in cubes , 1975, Discret. Math..

[54]  André Bouchet,et al.  Etude combinatoire des ordonnés finis , 1971 .

[55]  Oliver Pretzel,et al.  On the Dimension of Partially Ordered Sets , 1977, J. Comb. Theory, Ser. A.

[56]  William T. Trotter,et al.  Large minimal realizers of a partial order II , 1980, Discret. Math..

[57]  David Kelly On the dimension of partially ordered sets , 1981, Discret. Math..

[58]  I. Rabinovitch,et al.  The Dimension of Semiorders , 1978, J. Comb. Theory, Ser. A.

[59]  William T. Trotter,et al.  A generalization of Turán's theorem to directed graphs , 1980, Discret. Math..

[60]  T. Hiraguchi On the Dimension of Orders , 1955 .

[61]  William T. Trotter Stacks and splits of partially ordered sets , 1981, Discret. Math..

[62]  I. Rabinovitch,et al.  The rank of a distributive lattice , 1979, Discret. Math..

[63]  William T. Trotter,et al.  The dimension of planar posets , 1977, J. Comb. Theory, Ser. B.

[64]  Bill Sands Generating sets for lattices of dimension two , 1980, Discret. Math..

[65]  Martin Charles Golumbic,et al.  Comparability graphs and a new matroid , 1977, J. Comb. Theory, Ser. B.

[66]  P. Hammer,et al.  Aggregation of inequalities in integer programming. , 1975 .