A Temporal Dynamic Logic for Verifying Hybrid System Invariants

We combine first-order dynamic logic for reasoning about possible behaviour of hybrid systems with temporal logic for reasoning about the temporal behaviour during their operation. Our logic supports verification of hybrid programs with first-order definable flows and provides a uniform treatment of discrete and continuous evolution. For our combined logic, we generalise the semantics of dynamic modalities to refer to hybrid traces instead of final states. Further, we prove that this gives a conservative extension of dynamic logic. On this basis, we provide a modular verification calculus that reduces correctness of temporal behaviour of hybrid systems to non-temporal reasoning. Using this calculus, we analyse safety invariants in a train control system and symbolically synthesise parametric safety constraints.

[1]  Nicolas Markey,et al.  Non-deterministic Temporal Logics for General Flow Systems , 2004, HSCC.

[2]  Edmund M. Clarke,et al.  The Image Computation Problem in Hybrid Systems Model Checking , 2007, HSCC.

[3]  Robin Milner,et al.  Theories for the Global Ubiquitous Computer , 2004, FoSSaCS.

[4]  Robert L. Grossman,et al.  Timed Automata , 1999, CAV.

[5]  Daniel Leivant,et al.  Partial Correctness Assertions Provable in Dynamic Logics , 2004, FoSSaCS.

[6]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[7]  Stephan Merz,et al.  Model Checking , 2000 .

[8]  Edmund M. Clarke,et al.  Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons , 1982, Sci. Comput. Program..

[9]  Anders P. Ravn,et al.  An Extended Duration Calculus for Hybrid Real-Time Systems , 1992, Hybrid Systems.

[10]  Carla Piazza,et al.  Algorithmic Algebraic Model Checking II: Decidability of Semi-algebraic Model Checking and Its Applications to Systems Biology , 2005, ATVA.

[11]  A. Nerode,et al.  Logics for hybrid systems , 2000, Proceedings of the IEEE.

[12]  André Platzer,et al.  Differential Logic for Reasoning About Hybrid Systems , 2007, HSCC.

[13]  Yde Venema,et al.  Dynamic Logic by David Harel, Dexter Kozen and Jerzy Tiuryn. The MIT Press, Cambridge, Massachusetts. Hardback: ISBN 0–262–08289–6, $50, xv + 459 pages , 2002, Theory and Practice of Logic Programming.

[14]  Hardi Hungar,et al.  On the Verification of Cooperating Traffic Agents , 2003, FMCO.

[15]  Roland Meyer,et al.  Model Checking Data-Dependent Real-Time Properties of the European Train Control System , 2006, 2006 Formal Methods in Computer Aided Design.

[16]  Vaughan R. Pratt,et al.  Process logic: preliminary report , 1979, POPL.

[17]  Jörg H. Siekmann,et al.  Deduction in the Verification Support Environment (VSE) , 1996, FME.

[18]  Alberto Bemporad,et al.  Hybrid systems : computation and control : 10th International Conference, HSCC 2007, Pisa, Italy, April 3-5, 2007 : proceedings , 2007 .

[19]  André Platzer,et al.  Differential Dynamic Logic for Verifying Parametric Hybrid Systems , 2007, TABLEAUX.

[20]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[21]  Ming-Deh A. Huang,et al.  Proof of proposition 1 , 1992 .

[22]  Joseph Y. Halpern,et al.  “Sometimes” and “not never” revisited: on branching versus linear time temporal logic , 1986, JACM.

[23]  Bernhard Beckert,et al.  Verification of Object-Oriented Software. The KeY Approach - Foreword by K. Rustan M. Leino , 2007, The KeY Approach.

[24]  Bernhard Beckert,et al.  Dynamic Logic , 2007, The KeY Approach.

[25]  Thomas A. Henzinger,et al.  Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.

[26]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[27]  Satoshi Yamane,et al.  The symbolic model-checking for real-time systems , 1996, Proceedings of the Eighth Euromicro Workshop on Real-Time Systems.

[28]  Jim Woodcock,et al.  FME'96: Industrial Benefit and Advances in Formal Methods , 1996, Lecture Notes in Computer Science.

[29]  Frank D. Valencia,et al.  Formal Methods for Components and Objects , 2002, Lecture Notes in Computer Science.

[30]  Bernhard Beckert,et al.  Dynamic logic with non-rigid functions a basis for object-oriented program verification , 2006 .

[31]  André Platzer,et al.  Towards a Hybrid Dynamic Logic for Hybrid Dynamic Systems , 2007, HyLo@FLoC.

[32]  Bernhard Beckert,et al.  A Sequent Calculus for First-Order Dynamic Logic with Trace Modalities , 2001, IJCAR.