Second-order semiclassical calculations for diatomic molecules

Abstract The second-order WKB quantization condition is used to derive expressions for the second-order contributions to the vibrational energy levels and the rotational and centrifugal constants of a diatomic molecule. The second-order corrections to the RKR (Rydberg-Klein-Rees) turning points are also calculated. These second-order quantities are related to the quantities calculated from Kaiser's modified first-order quantization condition. Numerical calculations for the ground electronic state of carbon monoxide are compared with quantum-mechanical values obtained by numerical solution of the Schrodinger equation. In general, the second-order semiclassical values are in good agreement with the quantum-mechanical values, and can be computed by the present methods in a small fraction of the time.

[1]  Rudolph E. Langer,et al.  On the Connection Formulas and the Solutions of the Wave Equation , 1937 .

[2]  R. Leroy Molecular Constants and Internuclear Potential of Ground-State Molecular Iodine , 1970 .

[3]  R. L. Roy,et al.  Improved Spectroscopic Data Synthesis for I2(B3ΠOu+) and Predictions of J Dependence for B(3ΠOu+)–X(1Σg+) Transition Intensities , 1973 .

[4]  R. Rydberg Über einige Potentialkurven des Quecksilberhydrids , 1933 .

[5]  R. Howard Effects of the Langer Transformation on the Calculation of Internuclear Potential Curves , 1971 .

[6]  J. L. Dunham The Wentzel-Brillouin-Kramers Method of Solving the Wave Equation , 1932 .

[7]  J. Tellinghuisen Diatomic centrifugal distortion constants from semiclassical phase integrals , 1973 .

[8]  J. L. Dunham The Energy Levels of a Rotating Vibrator , 1932 .

[9]  O. Klein,et al.  Zur Berechnung von Potentialkurven für zweiatomige Moleküle mit Hilfe von Spektraltermen , 1932 .

[10]  R. Davies,et al.  Second‐Order WKB Corrections to Rydberg—Klein—Rees Potential Curves , 1966 .

[11]  J. B. Krieger,et al.  Use of the WKB Method for Obtaining Energy Eigenvalues , 1967 .

[12]  R. Zare,et al.  Rydberg-Klein-Rees potential for the X1Σ+ state of the CO molecule☆ , 1971 .

[13]  J. Tellinghuisen Fast, accurate RKR computations , 1972 .

[14]  Hugh M. Hulburt,et al.  Potential Energy Functions for Diatomic Molecules , 1941 .

[15]  J. Watson,et al.  RKR potentials and semiclassical centrifugal constants of diatomic molecules , 1973 .

[16]  J. W. Cooley,et al.  An improved eigenvalue corrector formula for solving the Schrödinger equation for central fields , 1961 .

[17]  W. Roh,et al.  CO laser spectra , 1974 .

[18]  J. K. Cashion,et al.  Testing of Diatomic Potential‐Energy Functions by Numerical Methods , 1963 .

[19]  R. Davies,et al.  Higher Approximations in the Rydberg—Klein—Rees Method , 1965 .

[20]  E. Kaiser Dipole Moment and Hyperfine Parameters of H35Cl and D35Cl , 1970 .

[21]  H. Fleming,et al.  A simple numerical evaluation of the Rydberg-Klein-Rees integrals: Application to X1Σ+ state of 12C16O , 1972 .

[22]  A. S. Dickinson A new method for evaluating Rydberg-Klein-Rees integrals , 1972 .

[23]  R. Zare Calculation of Intensity Distribution in the Vibrational Structure of Electronic Transitions: The B3Π0+u—X1Σ0+g Resonance Series of Molecular Iodine , 1964 .

[24]  Richard N. Zare,et al.  Calculation of centrifugal distortion constants for diatomic molecules from RKR potentials , 1973 .

[25]  Ragnar Rydberg,et al.  Graphische Darstellung einiger bandenspektroskopischer Ergebnisse , 1932 .