Lump and lump-soliton solutions to the Hirota-Satsuma-Ito equation

Abstract We apply the Hirota direct method to construct lump and interaction solutions to the Hirota–Satsuma–Ito (HSI) equation. We establish a general theory for finding the lump-soliton to (2+1)-dimensional nonlinear PDEs. We generate the corresponding lump and lump-soliton solutions to the HSI equation by the logarithm transformation of the dependent variables.

[1]  Wen-Xiu Ma,et al.  Applications of linear superposition principle to resonant solitons and complexitons , 2017, Comput. Math. Appl..

[2]  J. Satsuma,et al.  Two‐dimensional lumps in nonlinear dispersive systems , 1979 .

[3]  Wen-Xiu Ma,et al.  Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation , 2016 .

[4]  Wen-Xiu Ma,et al.  Complexiton solutions to soliton equations by the Hirota method , 2017 .

[5]  Dmitry E. Pelinovsky,et al.  Self-focusing instability of plane solitons and chains of two-dimensional solitons in positive-dispersion media , 1993 .

[6]  Xianwei Zhou,et al.  Lump dynamics of a generalized two-dimensional Boussinesq equation in shallow water , 2018 .

[7]  Wen-Xiu Ma,et al.  Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations , 2016 .

[8]  Wen-Xiu Ma,et al.  Constructing lump solutions to a generalized Kadomtsev–Petviashvili–Boussinesq equation , 2016 .

[9]  Zhenyun Qin,et al.  Lump solutions to dimensionally reduced $$\varvec{p}$$p-gKP and $$\varvec{p}$$p-gBKP equations , 2016 .

[10]  P. Drazin,et al.  Solitons: An Introduction , 1989 .

[11]  E. Fan,et al.  Extended tanh-function method and its applications to nonlinear equations , 2000 .

[12]  Wen-Xiu Ma,et al.  Mixed lump-kink solutions to the KP equation , 2017, Comput. Math. Appl..

[13]  Chaudry Masood Khalique,et al.  Rational solutions to an extended Kadomtsev-Petviashvili-like equation with symbolic computation , 2016, Comput. Math. Appl..

[14]  Wen-Xiu Ma,et al.  Lump solutions to a (2+1)-dimensional extended KP equation , 2018, Comput. Math. Appl..

[15]  Yury Stepanyants,et al.  Obliquely propagating skew KP lumps , 2016 .

[16]  Wenxiu Ma,et al.  Lump solutions to the Kadomtsev–Petviashvili equation , 2015 .

[17]  Yuri S. Kivshar,et al.  Self-focusing and transverse instabilities of solitary waves , 2000 .

[18]  Zhiming Lu,et al.  Interaction of multi-lumps within the Kadomtsev–Petviashvili equation , 2018 .

[19]  Jarmo Hietarinta,et al.  Introduction to the Hirota bilinear method , 1997, solv-int/9708006.

[20]  Wen-Xiu Ma,et al.  Lump solutions to nonlinear partial differential equations via Hirota bilinear forms , 2016, 1607.06983.

[21]  Jian-bing Zhang,et al.  Mixed lump-kink solutions to the BKP equation , 2017, Comput. Math. Appl..

[22]  Ljudmila A. Bordag,et al.  Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction , 1977 .

[23]  Wenxiu Ma,et al.  Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions , 2004, nlin/0503001.

[24]  Xianwei Zhou,et al.  Resonant multiple wave solutions to a new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation: Linear superposition principle , 2018, Appl. Math. Lett..

[25]  Zhenyun Qin,et al.  Lump solutions to dimensionally reduced p-gKP and p-gBKP equations , 2015 .

[26]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[27]  Wen-Xiu Ma,et al.  Abundant interaction solutions of the KP equation , 2017, Nonlinear Dynamics.