Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles

[1]  M. Pollnau,et al.  Stochastic model of energy transfer processes among rare earth ions , 2018, Photonics Europe.

[2]  K. Krämer,et al.  Judd-Ofelt analysis of β-NaGdF4: Yb3+, Tm3+ and β-NaGdF4:Er3+ single crystals , 2017 .

[3]  Deming Liu,et al.  Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy , 2017, Nature.

[4]  M. Stampanoni,et al.  Stimulated scintillation emission depletion X-ray imaging. , 2017, Optics express.

[5]  M. Stampanoni,et al.  STED properties of Ce3+, Tb3+, and Eu3+ doped inorganic scintillators. , 2017, Optics express.

[6]  J. Elf,et al.  Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes , 2016, Science.

[7]  Markus Pollnau,et al.  Stochastic Model of Energy-Transfer Processes Among Rare-Earth Ions. Example of Al2O3:Tm3+ , 2016 .

[8]  Wei Huang,et al.  Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water , 2016, Nature Communications.

[9]  T. Jia,et al.  Mechanisms of the blue emission of NaYF4:Tm(3+) nanoparticles excited by an 800 nm continuous wave laser. , 2016, Physical chemistry chemical physics : PCCP.

[10]  T. Jia,et al.  Improving upconversion luminescence efficiency in Er3+-doped NaYF4 nanocrystals by two-color laser field , 2016, Journal of Materials Science.

[11]  Stefan W. Hell,et al.  Coordinate-targeted fluorescence nanoscopy with multiple off states , 2016, Nature Photonics.

[12]  Wei Fan,et al.  Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications. , 2016, ACS nano.

[13]  Arlee V. Smith,et al.  Mode instability thresholds for Tm-doped fiber amplifiers pumped at 790 nm. , 2015, Optics express.

[14]  Sailing He,et al.  Optical depletion mechanism of upconverting luminescence and its potential for multi-photon STED-like microscopy. , 2015, Optics express.

[15]  G. Dong,et al.  Improved Up-Conversion Luminescence from Er3+:LaF3 Nanocrystals Embedded in Oxyfluoride Glass Ceramics via Simultaneous Triwavelength Excitation , 2015 .

[16]  Chao Zhang,et al.  Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy. , 2015, Chemical reviews.

[17]  Frederik Görlitz,et al.  STED nanoscopy with fluorescent quantum dots , 2015, Nature Communications.

[18]  Sailing He,et al.  Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF4:Er(3+)/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW. , 2015, Biomedical optics express.

[19]  Tymish Y. Ohulchanskyy,et al.  Light upconverting core-shell nanostructures: nanophotonic control for emerging applications. , 2015, Chemical Society reviews.

[20]  Zhiqiang Gao,et al.  Carbon quantum dots and their applications. , 2015, Chemical Society reviews.

[21]  Xiaogang Liu,et al.  Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes , 2014, Nature Protocols.

[22]  A. Gad,et al.  Multicolor fluorescence nanoscopy by photobleaching: concept, verification, and its application to resolve selective storage of proteins in platelets. , 2014, ACS nano.

[23]  Babak Sanii,et al.  Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. , 2014, Nature nanotechnology.

[24]  Philip Tinnefeld,et al.  Choosing dyes for cw-STED nanoscopy using self-assembled nanorulers , 2014, Physical chemistry chemical physics : PCCP.

[25]  Xu Liu,et al.  From microscopy to nanoscopy via visible light , 2013, Light: Science & Applications.

[26]  J. Dawes,et al.  Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. , 2013, Nature nanotechnology.

[27]  B. Viollet,et al.  AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. , 2013, Cell metabolism.

[28]  Christian Eggeling,et al.  Nanoscopy with more than 100,000 'doughnuts' , 2013, Nature Methods.

[29]  A. Diaspro,et al.  Fast scanning STED and two‐photon fluorescence excitation microscopy with continuous wave beam , 2012, Journal of microscopy.

[30]  Renren Deng,et al.  Tuning upconversion through energy migration in core-shell nanoparticles. , 2011, Nature materials.

[31]  J. Wrachtrup,et al.  Super-resolution upconversion microscopy of praseodymium-doped yttrium aluminum garnet nanoparticles , 2011 .

[32]  S. Xiao,et al.  Different EDC/NHS activation mechanisms between PAA and PMAA brushes and the following amidation reactions. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[33]  Pavel Peterka,et al.  Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced 3H4 level lifetime. , 2011, Optics express.

[34]  Geoffrey A Ozin,et al.  Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. , 2011, Nano letters.

[35]  Christian Eggeling,et al.  Analytical description of STED microscopy performance. , 2010, Optics express.

[36]  Yang Yang,et al.  Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. , 2010, Biomaterials.

[37]  S. E. Irvine,et al.  Fast Sted Microscopy with Continuous Wave Fiber Lasers References and Links , 2022 .

[38]  Mark Bates,et al.  Super-resolution fluorescence microscopy. , 2009, Annual review of biochemistry.

[39]  Cunhai Dong,et al.  Cation exchange in lanthanide fluoride nanoparticles. , 2009, ACS nano.

[40]  D. Simpson,et al.  Visible and near infra-red up-conversion in Tm3+/Yb3+ co-doped silica fibers under 980 nm excitation. , 2008, Optics express.

[41]  Zhengquan Li,et al.  An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence , 2008, Nanotechnology.

[42]  A. Tkachuk,et al.  Spectroscopic study of thulium-activated double sodium yttrium fluoride Na0.4Y0.6F2.2:Tm3+ crystals: I. Intensity of spectra and luminescence kinetics , 2008 .

[43]  Lili Wang,et al.  Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals. , 2008, Optics Express.

[44]  Andreas Schönle,et al.  Resolution scaling in STED microscopy. , 2008, Optics express.

[45]  S. Hell,et al.  STED microscopy with continuous wave beams , 2007, Nature Methods.

[46]  Tierui Zhang,et al.  A general approach for transferring hydrophobic nanocrystals into water. , 2007, Nano letters.

[47]  John-Christopher Boyer,et al.  Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. , 2006, Nano letters.

[48]  G. Somesfalean,et al.  Ultraviolet upconversion fluorescence in rare-earth-ion-doped Y2O3 induced by infrared diode laser excitation. , 2007, Optics letters.

[49]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[50]  Hoi Sing Kwok,et al.  Aggregation-induced emission , 2006, SPIE Optics + Photonics.

[51]  S. Hell,et al.  STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis , 2006, Nature.

[52]  M. Gustafsson Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  C. Larabell,et al.  Quantum dots as cellular probes. , 2005, Annual review of biomedical engineering.

[54]  Z. Melikishvili,et al.  Ultraviolet and visible emission cross-sections for Tm3+ : YLiF4 laser system , 2004 .

[55]  Norman P. Barnes,et al.  Comparison of Tm : ZBLAN and Tm : silica fiber lasers; Spectroscopy and tunable pulsed laser operation around 1.9 μm , 2004 .

[56]  George H. Patterson,et al.  A Photoactivatable GFP for Selective Photolabeling of Proteins and Cells , 2002, Science.

[57]  H. Yersin Transition Metal and Rare Earth Compounds , 2001 .

[58]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[59]  I. R. Martín,et al.  Room temperature photon avalanche upconversion in Tm3+-doped fluoroindate glasses , 2000 .

[60]  S. Hell,et al.  Subdiffraction resolution in far-field fluorescence microscopy. , 1999, Optics letters.

[61]  M. Chalfie GREEN FLUORESCENT PROTEIN , 1995, Photochemistry and photobiology.

[62]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[63]  D. Nguyen,et al.  Spectroscopy and dynamics of upconversion in Tm3+: YLiF4 , 1991 .

[64]  Sumio Watanabe,et al.  Immunocytochemical Detection of Desmin in Fat‐Storing Cells (Ito Cells) , 1984, Hepatology.

[65]  R. Leavitt,et al.  Absorption spectrum, energy levels, and crystal‐field parameters of Tm3+:LaCl3 , 1981 .

[66]  T. R. Faulkner,et al.  The absorption and magnetic circular dichroism spectra of Cs2NaTmCl6 , 1979 .

[67]  W. Krupke,et al.  Crystal‐Field Splitting of Trivalent Thulium and Erbium J Levels in Yttrium Oxide , 1964 .