Experimental evidence of the fractality of fracture surfaces has been widely recognized in the case of concrete, ceramics and other disordered materials. An investigationpost mortem on concrete fracture surfaces of specimens broken in direct tension has been carried out, yielding non-integer (fractal) dimensions of profiles, which are then related to the ‘renormalized fracture energy’ of the material. No unique value for the fractal dimension can be defined: the assumption of multifractality for the damaged, material microstructure produces a dimensional increment of the dissipation space with respect to the number 2, and represents the basis for the so-called multifractal scaling law. A transition from extreme Brownian disorder (slope 1/2) to extreme order (zero slope) may be evidenced in the bilogarithmic diagram: the nominal fracture energyGF increases with specimen size by following a nonlinear trend. Two extreme scaling regimes can be identified, namely the fractal (disordered) regime, corresponding to the smallest sizes, and the homogeneous (ordered) regime, corresponding to the largest sizes, for which an asymptotic constant value ofGF is reached.ResumeOn a largement établi la preuve expérimentale du caractère fractal des surfaces de rupture dans le cas du béton, des céramiques et d'autres matériaux ‘désordonnés’. Une étudepost mortem menée sur des surfaces de rupture d'échantillons cassés par traction directe révèle des dimensions non intégrales (fractales) des profils dont on a établi la relation avec l'énergie de rupture ‘renormalisée’ du matériau. Il n'est pas possible d'établir une valeur unique de la dimension fractale: en présumant la multifractalité de la microstructure du matériau endommagé, on obtient une augmentation dimensionnelle par rapport au numéro 2 et on établit la base de la loi dite d'échelle multifractale. Dans le diagramme à deux logarithmes on peut voir, une transition du désordre de Brown extrême (inclinaison 1/2) à l'ordre extrême (inclinaison zéro); l'énergie de fracture nominaleGF augmente avec les dimensions de l'échantillon suivant une tendance non linéaire. On peut voir deux régimes extrêmes d'échelle, c'est-à-dire le régime fractal désordonné) . qui correspond aux dimensions minimales, et le régime homogène (ordonné), qui correspond aux dimensions maximales pour lesquelles on atteint une valeur constante asymptotique deGF.
[1]
C. C. Barton,et al.
Fractal characterization of fracture surfaces in concrete
,
1990
.
[2]
G. I. Barenblatt,et al.
Similarity, Self-Similarity and Intermediate Asymptotics
,
1979
.
[3]
A. Carpinteri,et al.
Fractals, Renormalization Group Theory and Scaling Laws for Strength and Toughness of Disordered Materials
,
1994
.
[4]
A. Carpinteri.
Scaling laws and renormalization groups for strength and toughness of disordered materials
,
1994
.
[5]
R. Voss.
Random Fractal Forgeries
,
1985
.
[6]
Stephen R. Brown.
A note on the description of surface roughness using fractal dimension
,
1987
.
[7]
D. Davidson.
Fracture surface roughness as a gauge of fracture toughness: Aluminium-particulate SiC composites
,
1989
.
[8]
Benoit B. Mandelbrot,et al.
Fractal Geometry of Nature
,
1984
.
[9]
Masatoshi Nihei,et al.
Fractal Characteristics of Scanning Tunneling Microscopic Images of Brittle Fracture Surfaces on Molybdenum
,
1992
.
[10]
B. Mandelbrot,et al.
Fractal character of fracture surfaces of metals
,
1984,
Nature.
[11]
Rilem.
FMC 1 Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams
,
1985
.
[12]
Robert H. Evans,et al.
Calibration of advanced very high resolution radiometer infrared observations
,
1985
.
[13]
B. Mandelbrot.
Self-Affine Fractals and Fractal Dimension
,
1985
.
[14]
L F Richardson,et al.
The problem of contiguity : An appendix to statistics of deadly quarrels
,
1961
.
[15]
K. Wilson.
Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture
,
1971
.
[16]
A. Carpinteri,et al.
Multifractal nature of material microstructure and size effects on nominal tensile strength
,
1993
.
[17]
B. Mandelbrot,et al.
Fractional Brownian Motions, Fractional Noises and Applications
,
1968
.
[18]
Stephen R. Brown,et al.
Broad bandwidth study of the topography of natural rock surfaces
,
1985
.
[19]
K. Wilson.
The renormalization group and critical phenomena
,
1983
.
[20]
S. Hough.
On the use of spectral methods for the determination of fractal dimension
,
1989
.