GANALYZER: A TOOL FOR AUTOMATIC GALAXY IMAGE ANALYSIS

We describe Ganalyzer, a model-based tool that can automatically analyze and classify galaxy images. Ganalyzer works by separating the galaxy pixels from the background pixels, finding the center and radius of the galaxy, generating the radial intensity plot, and then computing the slopes of the peaks detected in the radial intensity plot to measure the spirality of the galaxy and determine its morphological class. Unlike algorithms that are based on machine learning, Ganalyzer is based on measuring the spirality of the galaxy, a task that is difficult to perform manually, and in many cases can provide a more accurate analysis compared to manual observation. Ganalyzer is simple to use, and can be easily embedded into other image analysis applications. Another advantage is its speed, which allows it to analyze ~10,000,000 galaxy images in five days using a standard modern desktop computer. These capabilities can make Ganalyzer a useful tool in analyzing large data sets of galaxy images collected by autonomous sky surveys such as SDSS, LSST, or DES. The software is available for free download at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer, and the data used in the experiment are available at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer/GalaxyImages.zip.

[1]  M. Fukugita,et al.  Statistical Properties of Bright Galaxies in the Sloan Digital Sky Survey Photometric System , 2001, astro-ph/0105401.

[2]  N. R. Tanvir,et al.  Galaxy morphology to I = 25 mag in the Hubble Deep Field , 1996 .

[3]  Marc Huertas-Company,et al.  Revisiting the Hubble sequence in the SDSS DR7 spectroscopic sample: a publicly available Bayesian automated classification , 2010, 1010.3018.

[4]  C. Lintott,et al.  Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey , 2008, 0804.4483.

[5]  Christopher J. Conselice,et al.  The Relationship between Stellar Light Distributions of Galaxies and Their Formation Histories , 2003 .

[6]  Lior Shamir,et al.  Source Code for Biology and Medicine Open Access Wndchrm – an Open Source Utility for Biological Image Analysis , 2022 .

[7]  Mamoru Doi,et al.  Morphological classification of galaxies using simple photometric parameters , 1993 .

[8]  University of Toronto,et al.  A New Approach to Galaxy Morphology. I. Analysis of the Sloan Digital Sky Survey Early Data Release , 2003, astro-ph/0301239.

[9]  Howard A. Bushouse,et al.  Astronomical Data Analysis Software and Systems VII , 1998 .

[10]  Ralf Bender,et al.  A Proposed Revision of the Hubble Sequence for Elliptical Galaxies , 1996 .

[11]  C. Lintott,et al.  Galaxy Zoo: reproducing galaxy morphologies via machine learning★ , 2009, 0908.2033.

[12]  Karl Glazebrook,et al.  Hubble Space Telescope Imaging of the CFRS and LDSS Redshift Surveys. I. Morphological Properties , 1998 .

[13]  Donald E. Osterbrock,et al.  On the Classification of the Forms and the Stellar Content of Galaxies , 1969 .

[14]  C. Lintott,et al.  Galaxy Zoo 1: data release of morphological classifications for nearly 900 000 galaxies , 2010, 1007.3265.

[15]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[16]  S. Okamura,et al.  Galaxy types in the Sloan Digital Sky survey using supervised artificial neural networks , 2003, astro-ph/0306390.

[17]  L. Ho,et al.  Detailed structural decomposition of galaxy images , 2002, astro-ph/0204182.

[18]  S. J. Lilly,et al.  HST imaging of CFRS and LDSS galaxies - I: Morphological Properties , 1997 .

[19]  Lior Shamir,et al.  Automatic morphological classification of galaxy images. , 2009, Monthly notices of the Royal Astronomical Society.

[20]  M. Salvato,et al.  A robust morphological classification of high-redshift galaxies using support vector machines on seeing limited images II. Quantifying morphological k-correction in the COSMOS field at 1 < z < 2: Ks band vs. I band , 2008, 0811.1045.

[21]  Miroslav Morháč,et al.  Identification of peaks in multidimensional coincidence γ-ray spectra , 2000 .

[22]  Robert J. Brunner,et al.  Robust Machine Learning Applied to Astronomical Data Sets. III. Probabilistic Photometric Redshifts for Galaxies and Quasars in the SDSS and GALEX , 2008, 0804.3413.

[23]  Ian Lewis,et al.  Proceedings of the SPIE , 2012 .

[24]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[25]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[26]  O. Fèvre,et al.  A robust morphological classification of high-redshift galaxies using support vector machines on seeing limited images I. Method description , 2007, 0709.1359.

[27]  Sergey E. Koposov,et al.  GEMS: Galaxy Fitting Catalogs and Testing Parametric Galaxy Fitting Codes: GALFIT and GIM2D , 2007, 0704.2601.

[28]  Thorsten Lisker,et al.  Is the Gini Coefficient a Stable Measure of Galaxy Structure? , 2008, 0807.1531.

[29]  William Wilson Morgan,et al.  A SPECTRAL CLASSIFICATION OF GALAXIES , 1957 .