Size- and temperature-dependent oxidative pyrolysis and auto-ignition of spherical beech and spruce wood

[1]  B. C. Hagen,et al.  From smoldering to flaming fire: Different modes of transition , 2021 .

[2]  Kenji Takisawa,et al.  Effect of wood biomass components on self-heating , 2021, Bioresources and Bioprocessing.

[3]  S. Mahapatra,et al.  Single particle combustion studies of coal/biomass fuel mixtures , 2020 .

[4]  Shu Zhang,et al.  Fundamental Advances in Biomass Autothermal/Oxidative Pyrolysis: A Review , 2020, ACS Sustainable Chemistry & Engineering.

[5]  I. S. Ertesvåg,et al.  Experimental study of smouldering in wood pellets with and without air draft , 2020 .

[6]  S. Krigstin,et al.  Comparative analysis of bark and woodchip biomass piles for enhancing predictability of self-heating , 2019, Fuel.

[7]  C. Hochenauer,et al.  Experimental investigation on biomass shrinking and swelling behaviour: Particles pyrolysis and wood logs combustion , 2019, Biomass and Bioenergy.

[8]  G. Rein,et al.  Quantifying self-heating ignition of biochar as a function of feedstock and the pyrolysis reactor temperature , 2019, Fuel.

[9]  G. Rein,et al.  The effect of chemical composition on the charring of wood across scales , 2019, Proceedings of the Combustion Institute.

[10]  E. Smidt,et al.  Impact of Pyrolysis Temperature on Charcoal Characteristics , 2018, Industrial & Engineering Chemistry Research.

[11]  Katarina Rupar-Gadd,et al.  Self-heating properties of softwood samples investigated by using isothermal calorimetry , 2017 .

[12]  H. Baum,et al.  The effect of size, shape and pyrolysis conditions on the thermal decomposition of wood particles and firebrands , 2017 .

[13]  G. Rein,et al.  Thermochemical conversion of biomass in smouldering combustion across scales: The roles of heterogeneous kinetics, oxygen and transport phenomena. , 2016, Bioresource technology.

[14]  Jenny M. Jones,et al.  Low temperature ignition of biomass , 2015 .

[15]  S. Salvador,et al.  Thick wood particle pyrolysis in an oxidative atmosphere , 2015 .

[16]  U. Müller,et al.  Thermal conductivity of wood at angles to the principal anatomical directions , 2015, Wood Science and Technology.

[17]  E. Fisher,et al.  Effect of Particle Size on Low-Temperature Pyrolysis of Woody Biomass , 2014 .

[18]  K. Werner,et al.  Thermal decomposition of hemicelluloses , 2014 .

[19]  C. Blasi,et al.  Effects of Particle Size and Density on the Packed-Bed Pyrolysis of Wood , 2013 .

[20]  Wei-hsin Chen,et al.  Biomass torrefaction characteristics in inert and oxidative atmospheres at various superficial velocities. , 2013, Bioresource technology.

[21]  E. Fisher,et al.  Low-Temperature Pyrolysis of Woody Biomass in the Thermally Thick Regime , 2013 .

[22]  Paul J. Dauenhauer,et al.  Top ten fundamental challenges of biomass pyrolysis for biofuels. , 2012 .

[23]  F. Behrendt,et al.  Smouldering of pine wood: Kinetics and reaction heats , 2012 .

[24]  M. Sain,et al.  Spectroscopic studies and evaluation of thermorheological properties of softwood and hardwood lignin , 2011 .

[25]  Zhongyang Luo,et al.  Interactions of biomass components during pyrolysis: A TG-FTIR study , 2011 .

[26]  H. Baum,et al.  Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis , 2010 .

[27]  Haiping Yang,et al.  Characteristics of hemicellulose, cellulose and lignin pyrolysis , 2007 .

[28]  J. Quintiere,et al.  Glowing ignition of wood: the onset of surface combustion , 2005 .

[29]  P. Salatino,et al.  Oxidative pyrolysis of solid fuels , 2004 .

[30]  Vytenis Babrauskas,et al.  Ignition of Wood: A Review of the State of the Art , 2002 .

[31]  C. Blasi,et al.  Thermogravimetric Analysis and Devolatilization Kinetics of Wood , 2002 .

[32]  H. D. Baehr,et al.  Wärme- und Stoffübertragung , 1994 .

[33]  F. Shafizadeh,et al.  Role of oxygen chemisorption in low-temperature ignition of cellulose , 1980 .