Downregulation of miR-133 via MAPK/ERK signaling pathway involved in nicotine-induced cardiomyocyte apoptosis

[1]  T. Hagen,et al.  Reduced life expectancy after an incident hospital diagnosis of acute myocardial infarction--effects of smoking in women and men. , 2013, International journal of cardiology.

[2]  Yanjie Lu,et al.  MicroRNA-101 Inhibited Postinfarct Cardiac Fibrosis and Improved Left Ventricular Compliance via the FBJ Osteosarcoma Oncogene/Transforming Growth Factor-&bgr;1 Pathway , 2012, Circulation.

[3]  Salil Sharma,et al.  Repression of miR-142 by p300 and MAPK is required for survival signalling via gp130 during adaptive hypertrophy , 2012, EMBO molecular medicine.

[4]  A. Cesario,et al.  Nicotine: specific role in angiogenesis, proliferation and apoptosis , 2012, Critical reviews in toxicology.

[5]  Chaoqian Xu,et al.  The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2 , 2011, Nature Medicine.

[6]  M. Polkey,et al.  Downregulation of the serum response factor/miR-1 axis in the quadriceps of patients with COPD , 2011, Thorax.

[7]  P. Anversa,et al.  Role of Cardiac Stem Cells in Cardiac Pathophysiology: A Paradigm Shift in Human Myocardial Biology , 2011, Circulation research.

[8]  L. Hui,et al.  Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors , 2011, Nature.

[9]  Jianli Zhao,et al.  Estradiol pretreatment attenuated nicotine-induced endothelial cell apoptosis via estradiol functional membrane receptor. , 2011, International immunopharmacology.

[10]  M. Hurlé,et al.  Myocardial gene expression of microRNA-133a and myosin heavy and light chains, in conjunction with clinical parameters, predict regression of left ventricular hypertrophy after valve replacement in patients with aortic stenosis , 2011, Heart.

[11]  H. Zhang,et al.  Role of miR-1 and miR-133a in myocardial ischemic postconditioning , 2011, Journal of Biomedical Science.

[12]  Ning Wang,et al.  MicroRNA-328 Contributes to Adverse Electrical Remodeling in Atrial Fibrillation , 2010, Circulation.

[13]  Zhe Li,et al.  Reciprocal Repression Between MicroRNA-133 and Calcineurin Regulates Cardiac Hypertrophy: A Novel Mechanism for Progressive Cardiac Hypertrophy , 2010, Hypertension.

[14]  Z. Pan,et al.  The roles of microRNAs in heart diseases: a novel important regulator. , 2010, Current medicinal chemistry.

[15]  Chaoqian Xu,et al.  MicroRNA-1 downregulation by propranolol in a rat model of myocardial infarction: a new mechanism for ischaemic cardioprotection. , 2009, Cardiovascular research.

[16]  Jian-Fu Chen,et al.  MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. , 2009, The Journal of clinical investigation.

[17]  Teruo Okano,et al.  Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. , 2009, The Journal of clinical investigation.

[18]  Ning Wang,et al.  Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines. , 2009, Cardiovascular research.

[19]  E. Olson,et al.  microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. , 2008, Genes & development.

[20]  R. Yeh,et al.  MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. , 2008, Cell stem cell.

[21]  Shumei Yang,et al.  Prenatal Nicotine Exposure Increases Heart Susceptibility to Ischemia/Reperfusion Injury in Adult Offspring , 2008, Journal of Pharmacology and Experimental Therapeutics.

[22]  K. Webster Programmed death as a therapeutic target to reduce myocardial infarction. , 2007, Trends in pharmacological sciences.

[23]  A. Cesario,et al.  Nicotine, lung and cancer. , 2007, Anti-cancer agents in medicinal chemistry.

[24]  Mahipal Singh,et al.  &bgr;1 Integrins Modulate &bgr;-Adrenergic Receptor–Stimulated Cardiac Myocyte Apoptosis and Myocardial Remodeling , 2007, Hypertension.

[25]  A. Goette,et al.  Cigarette smoking induces atrial fibrosis in humans via nicotine , 2007, Heart.

[26]  R. Hubbard,et al.  Use of nicotine replacement therapy and the risk of acute myocardial infarction, stroke, and death , 2005, Tobacco Control.

[27]  Yong Zhao,et al.  Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis , 2005, Nature.

[28]  M. Fishbein,et al.  Chronic nicotine in hearts with healed ventricular myocardial infarction promotes atrial flutter that resembles typical human atrial flutter. , 2005, American journal of physiology. Heart and circulatory physiology.

[29]  Jonathan A. Zlabek,et al.  Nicotine replacement therapy and cardiovascular disease. , 2005, Mayo Clinic proceedings.

[30]  Da-Zhi Wang,et al.  Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression , 2004, Nature.

[31]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[32]  M. Barančík,et al.  Mitogen-activated protein kinases: A new therapeutic target in cardiac pathology , 2003, Molecular and Cellular Biochemistry.

[33]  S. Izumo,et al.  Apoptosis: basic mechanisms and implications for cardiovascular disease. , 1998, Circulation research.

[34]  N. Benowitz Drug therapy. Pharmacologic aspects of cigarette smoking and nicotine addiction. , 1988, The New England journal of medicine.

[35]  E. C. Hammond,et al.  Asbestos and smoking. , 1979, JAMA.

[36]  www.elsevier.com/locate/cardiores Review C-reactive protein in atherosclerosis: A causal factor? , 2006 .

[37]  D. Vidrine,et al.  Successes and failures of the teachable moment , 2006, Cancer.

[38]  Chaoqian Xu,et al.  Cellular Physiology and Biochemistry Cellular Physiology and Biochemistry Original Paper Tanshinone Iia Improves Mir-133 Expression through Mapk Erk1/2 Pathway in Hypoxic Cardiac Myocytes Cellular Physiology and Biochemistry Cellular Physiology and Biochemistry , 2022 .