Strong Convergence Theorem for Bregman Strongly Nonexpansive Mappings and Equilibrium Problems in Reflexive Banach Spaces

By using a new hybrid method, a strong convergence theorem for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of Bregman strongly nonexpansive mappings in a reflexive Banach space is proved.

[1]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[2]  Shoham Sabach,et al.  Existence and Approximation of Fixed Points of Bregman Firmly Nonexpansive Mappings in Reflexive Banach Spaces , 2011, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[3]  P. L. Combettes,et al.  Equilibrium programming in Hilbert spaces , 2005 .

[4]  Wataru Takahashi,et al.  STRONG AND WEAK CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS AND RELATIVELY NONEXPANSIVE MAPPINGS IN BANACH SPACES , 2009 .

[5]  Wataru Takahashi,et al.  Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces , 2007 .

[6]  S. Reich,et al.  Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces , 2010 .

[7]  A. Ambrosetti,et al.  A primer of nonlinear analysis , 1993 .

[8]  A. Moudafi,et al.  SECOND-ORDER DIFFERENTIAL PROXIMAL METHODS FOR EQUILIBRIUM PROBLEMS , 2003 .

[9]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[10]  A. Kartsatos Theory and applications of nonlinear operators of accretive and monotone type , 1996 .

[11]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[12]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[13]  Heinz H. Bauschke,et al.  Legendre functions and the method of random Bregman projections , 1997 .

[14]  W. Oettli,et al.  From optimization and variational inequalities to equilibrium problems , 1994 .

[15]  S. Reich,et al.  Two Strong Convergence Theorems for a Proximal Method in Reflexive Banach Spaces , 2010 .

[16]  R. T. Rockafellar,et al.  Gradients of convex functions , 1969 .

[17]  Wataru Takahashi,et al.  Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces , 2008 .

[18]  W. Takahashi,et al.  Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups , 2003 .

[19]  Y. Censor,et al.  Iterations of paracontractions and firmaly nonexpansive operators with applications to feasibility and optimization , 1996 .

[20]  Dan Butnariu,et al.  Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces , 2006 .

[21]  Y. Censor,et al.  An iterative row-action method for interval convex programming , 1981 .

[22]  Wataru Takahashi,et al.  Weak and Strong Convergence Theorems for a Nonexpansive Mapping and an Equilibrium Problem , 2007 .

[23]  A. Iusem,et al.  Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization , 2000 .

[24]  Elena Resmerita,et al.  On Total Convexity, Bregman Projections and Stability in Banach Spaces , 2004 .

[25]  Heinz H. Bauschke,et al.  ESSENTIAL SMOOTHNESS, ESSENTIAL STRICT CONVEXITY, AND LEGENDRE FUNCTIONS IN BANACH SPACES , 2001 .

[26]  R. Phelps Convex Functions, Monotone Operators and Differentiability , 1989 .