Some novel discrete distributions under fourfold sampling schemes and conditional bivariate order statistics

This paper presents some novel trivariate discrete distributions that are obtained by modifying the bivariate binomial distribution. These distributions are important probability models for the development of conditional bivariate order statistics. The distributional properties of bivariate order statistics are studied and derived under the condition that certain values of the underlying random vectors (X,Y) are truncated and fall in the threshold set {(t,s)@?R^2:[email protected]?u,[email protected]?v}, (u,v)@?R^2.

[1]  R. Graham,et al.  A Characterization of Multivariate Binomial Distribution by Univariate Marginals1 , 1975 .

[2]  S. Kocherlakota,et al.  Bivariate discrete distributions , 1992 .

[3]  Brendan Bradley,et al.  How to Estimate Spatial Contagion between Financial Markets , 2005 .

[4]  M. A. Hamdan Canonical Expansion of the Bivariate Binomial Distribution with Unequal Marginal Indices , 1972 .

[5]  Ömer L. Gebizlioglu,et al.  Risk analysis under progressive type II censoring with binomial claim numbers , 2009, J. Comput. Appl. Math..

[6]  J. S. Huang,et al.  Dependence structure of bivariate order statistics with applications to Bayramoglu's distributions , 2013, J. Multivar. Anal..

[7]  J. C. Rodríguez,et al.  Measuring financial contagion:a copula approach , 2007 .

[8]  D. R. Jensen,et al.  A BIVARIATE BINOMIAL DISTRIBUTION AND SOME APPLICATIONS1 , 1976 .

[9]  Herbert A. David,et al.  Order Statistics , 2011, International Encyclopedia of Statistical Science.

[10]  M. A. Hamdan A Note on the Trinomial Distribution , 1975 .

[11]  I. Bairamov,et al.  Discrete Distributions Connected with the Bivariate Binormal , 2010 .

[12]  On a characterization property of the multinomial distribution , 1974 .

[13]  Konul Bayramoglu Kavlak,et al.  From the Huang-Kotz FGM distribution to Baker's bivariate distribution , 2013, J. Multivar. Anal..

[14]  F. Tank,et al.  DETERMINATION OF DEPENDENCY PARAMETER IN JOINT DISTRIBUTION OF DEPENDENT RISKS BY FUZZY APPROACH , 2006 .

[15]  A. C. Aitken,et al.  XI.—On Fourfold Sampling with and without Replacement , 1936 .

[16]  Kee-Hong Bae,et al.  A New Approach to Measuring Financial Contagion , 2000 .

[17]  Fabrizio Durante,et al.  Spatial contagion between financial markets: a copula-based approach , 2010 .

[18]  N. L. Johnson,et al.  Discrete Multivariate Distributions , 1998 .

[19]  Omer L. Gebizlioglu,et al.  Tolerance intervals for quantiles of bivariate risks and risk measurement , 2008 .

[20]  M. A. Hamdan,et al.  A Note on the Bivariate Poisson Distribution , 1969 .

[21]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[22]  Ismihan Bayramoglu Reliability and Mean Residual Life of Complex Systems With Two Dependent Components Per Element , 2013, IEEE Transactions on Reliability.