Active spatial control of plasmonic fields

The field of plasmonics1 offers a route to control light fields with metallic nanostructures through the excitation of surface plasmon polaritons2. These surface waves, bound to a metal dielectric interface, can tightly confine electromagnetic energy3. Active control over surface plasmon polaritons has potential for applications in sensing4, photovoltaics5, quantum communication6, 7, nanocircuitry8, 9, metamaterials10, 11 and super-resolution microscopy12. We achieve here active control of plasmonic fields using a digital spatial light modulator. Optimizing the plasmonic phases through feedback, we focus surface plasmon polaritons at a freely prechosen point on the surface of a nanohole array. Digital addressing and scanning of surface plasmon polaritons without mechanical motion may enable novel interdisciplinary applications of advanced plasmonic devices in cell microscopy, optical data storage and sensing.

[1]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[2]  K. Dholakia,et al.  In situ wavefront correction and its application to micromanipulation , 2010 .

[3]  Philippe Lalanne,et al.  Interaction between optical nano-objects at metallo-dielectric interfaces , 2006 .

[4]  A. Polman,et al.  Plasmonics Applied , 2008, Science.

[5]  Xiang Zhang,et al.  Subwavelength dynamic focusing in plasmonic nanostructures using time reversal , 2009 .

[6]  Jean-Claude Weeber,et al.  Launching and decoupling surface plasmons via micro-gratings , 2003 .

[7]  Giorgio Volpe,et al.  Controlling the optical near field of nanoantennas with spatial phase-shaped beams. , 2009, Nano letters.

[8]  Harald Giessen,et al.  All-optical control of the ultrafast dynamics of a hybrid plasmonic system. , 2010, Physical review letters.

[9]  Luis Martín-Moreno,et al.  Light passing through subwavelength apertures , 2010 .

[10]  E. G. van Putten,et al.  Demixing light paths inside disordered metamaterials. , 2008, Optics express.

[11]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[12]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[13]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[14]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[15]  Roux,et al.  Robust Acoustic Time Reversal with High-Order Multiple Scattering. , 1995, Physical review letters.

[16]  Maxim Durach,et al.  Toward full spatiotemporal control on the nanoscale. , 2007, Nano letters.

[17]  Michael Bauer,et al.  Adaptive subwavelength control of nano-optical fields , 2007, Nature.

[18]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[19]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[20]  Thomas W. Ebbesen,et al.  Surface-plasmon circuitry , 2008 .

[21]  J. P. Woerdman,et al.  Plasmon-assisted transmission of entangled photons , 2002, Nature.

[22]  Alfred Leitenstorfer,et al.  Active magneto-plasmonics in hybrid metal–ferromagnet structures , 2010 .

[23]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[24]  Mark I. Stockman,et al.  Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time reversal , 2008 .

[25]  Harald Giessen,et al.  Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. , 2009, Nature materials.

[26]  Anne Sentenac,et al.  Subdiffraction light focusing on a grating substrate. , 2008, Physical review letters.

[27]  Harry A Atwater,et al.  PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. , 2009, Nano letters.

[28]  S. Popoff,et al.  Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. , 2009, Physical review letters.

[29]  Nader Engheta,et al.  Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials , 2007, Science.

[30]  N. Rotenberg,et al.  Ultrafast Active Plasmonics on Gold Films , 2011 .