The discovery of aryl-2-nitroethyl triamino pyrimidines as anti-Trypanosoma brucei agents.

[1]  Kimberley M. Zorn,et al.  High-Throughput Phenotypic Screening and Machine Learning Methods Enabled the Selection of Broad-Spectrum Low-Toxicity Antitrypanosomatidic Agents , 2023, Journal of medicinal chemistry.

[2]  E. Chatelain,et al.  State-of-the-Art in the Drug Discovery Pathway for Chagas Disease: A Framework for Drug Development and Target Validation , 2023, Research and reports in tropical medicine.

[3]  G. Santos-Gomes,et al.  Parasitic Infection and Immunity—A Special Biomedicines Issue , 2022, Biomedicines.

[4]  Maria Paola Costi,et al.  Current Treatments to Control African Trypanosomiasis and One Health Perspective , 2022, Microorganisms.

[5]  D. Horn A profile of research on the parasitic trypanosomatids and the diseases they cause , 2022, PLoS neglected tropical diseases.

[6]  Maria Paola Costi,et al.  Repurposing the Trypanosomatidic GSK Kinetobox for the Inhibition of Parasitic Pteridine and Dihydrofolate Reductases , 2021, Pharmaceuticals.

[7]  Maria Paola Costi,et al.  Evidence of Pyrimethamine and Cycloguanil Analogues as Dual Inhibitors of Trypanosoma brucei Pteridine Reductase and Dihydrofolate Reductase , 2021, Pharmaceuticals.

[8]  Samuel Dean Basic Biology of Trypanosoma brucei with reference to the development of chemotherapies. , 2021, Current pharmaceutical design.

[9]  Bilge Debelec Butuner,et al.  Design, synthesis, and in vitro biological evaluation of novel thiazolopyrimidine derivatives as antileishmanial compounds. , 2020, Archiv der Pharmazie.

[10]  Maria Paola Costi,et al.  High-resolution crystal structure of Trypanosoma brucei pteridine reductase 1 in complex with an innovative tricyclic-based inhibitor. , 2020, Acta crystallographica. Section D, Structural biology.

[11]  J. Estaquier,et al.  Antileishmanial Drugs Modulate IL-12 Expression and Inflammasome Activation in Primary Human Cells , 2020, The Journal of Immunology.

[12]  G. Murilla,et al.  Differential virulence of Trypanosoma brucei rhodesiense isolates does not influence the outcome of treatment with anti-trypanosomal drugs in the mouse model , 2020, bioRxiv.

[13]  Maria Paola Costi,et al.  Identification of a 2,4-diaminopyrimidine scaffold targeting Trypanosoma brucei pteridine reductase 1 from the LIBRA compound library screening campaign. , 2020, European journal of medicinal chemistry.

[14]  E. Akl,et al.  New WHO guidelines for treatment of gambiense human African trypanosomiasis including fexinidazole: substantial changes for clinical practice. , 2019, The Lancet. Infectious diseases.

[15]  V. Eifler-Lima,et al.  Targeting pteridine reductase 1 and dihydrofolate reductase: the old is a new trend for leishmaniasis drug discovery. , 2019, Future medicinal chemistry.

[16]  Maria Paola Costi,et al.  Structural Insights into the Development of Cycloguanil Derivatives as Trypanosoma brucei Pteridine-Reductase-1 Inhibitors. , 2019, ACS infectious diseases.

[17]  Magambo Phillip Kimuda,et al.  Identification of Novel Potential Inhibitors of Pteridine Reductase 1 in Trypanosoma brucei via Computational Structure-Based Approaches and in Vitro Inhibition Assays , 2019, Molecules.

[18]  M. Castilho,et al.  Dual and selective inhibitors of pteridine reductase 1 (PTR1) and dihydrofolate reductase-thymidylate synthase (DHFR-TS) from Leishmania chagasi , 2019, Journal of enzyme inhibition and medicinal chemistry.

[19]  A. Pinto,et al.  Folates in Trypanosoma brucei: Achievements and Opportunities , 2018, ChemMedChem.

[20]  R. López-Vélez,et al.  Drug resistance and treatment failure in leishmaniasis: A 21st century challenge , 2017, PLoS neglected tropical diseases.

[21]  V. Avery,et al.  Leishmaniasis drug discovery: recent progress and challenges in assay development. , 2017, Drug discovery today.

[22]  C. Cárdenas,et al.  Identification of a type I nitroreductase gene in non-virulent Trypanosoma rangeli , 2017, Memorias do Instituto Oswaldo Cruz.

[23]  Maria Paola Costi,et al.  Chroman-4-One Derivatives Targeting Pteridine Reductase 1 and Showing Anti-Parasitic Activity , 2017, Molecules.

[24]  Shuguang Yuan,et al.  Using PyMOL as a platform for computational drug design , 2017 .

[25]  Maria Paola Costi,et al.  Profiling of Flavonol Derivatives for the Development of Antitrypanosomatidic Drugs. , 2016, Journal of medicinal chemistry.

[26]  U. Rashid,et al.  Structure based medicinal chemistry-driven strategy to design substituted dihydropyrimidines as potential antileishmanial agents. , 2016, European journal of medicinal chemistry.

[27]  R. Wall,et al.  The Epidemiology of Parasitic Diseases , 2015 .

[28]  A. Khalaf,et al.  Structure-Based Design and Synthesis of Antiparasitic Pyrrolopyrimidines Targeting Pteridine Reductase 1 , 2014, Journal of medicinal chemistry.

[29]  P. Kennedy Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness) , 2013, The Lancet Neurology.

[30]  Michael P. Barrett,et al.  Management of trypanosomiasis and leishmaniasis , 2012, British medical bulletin.

[31]  P. Kaye,et al.  Leishmaniasis: complexity at the host–pathogen interface , 2011, Nature Reviews Microbiology.

[32]  S. McNicholas,et al.  Presenting your structures: the CCP4mg molecular-graphics software , 2011, Acta crystallographica. Section D, Biological crystallography.

[33]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[34]  C. Burri,et al.  Clinical Presentation of T.b. rhodesiense Sleeping Sickness in Second Stage Patients from Tanzania and Uganda , 2011, PLoS neglected tropical diseases.

[35]  A. Fairlamb,et al.  Dissecting the Metabolic Roles of Pteridine Reductase 1 in Trypanosoma brucei and Leishmania major* , 2011, The Journal of Biological Chemistry.

[36]  W. Hunter,et al.  Structure-Based Design of Pteridine Reductase Inhibitors Targeting African Sleeping Sickness and the Leishmaniases† , 2009, Journal of medicinal chemistry.

[37]  A. Buschini,et al.  Genotoxicity Revaluation of Three Commercial Nitroheterocyclic Drugs: Nifurtimox, Benznidazole, and Metronidazole , 2009, Journal of parasitology research.

[38]  S. Daulouède,et al.  [Immunology and immunopathology of African trypanosomiasis]. , 2006, Medecine tropicale : revue du Corps de sante colonial.

[39]  A. Fairlamb,et al.  Structure and reactivity of Trypanosoma brucei pteridine reductase: inhibition by the archetypal antifolate methotrexate , 2006, Molecular microbiology.

[40]  Stephen M Beverley,et al.  Structures of Leishmania major pteridine reductase complexes reveal the active site features important for ligand binding and to guide inhibitor design. , 2005, Journal of molecular biology.

[41]  Hege S. Beard,et al.  Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. , 2004, Journal of medicinal chemistry.

[42]  Gordon A. Leonard,et al.  Pteridine reductase mechanism correlates pterin metabolism with drug resistance in trypanosomatid parasites , 2001, Nature Structural Biology.

[43]  J M Thornton,et al.  LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. , 1995, Protein engineering.

[44]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[45]  Alexei Vagin,et al.  Molecular replacement with MOLREP. , 2010, Acta crystallographica. Section D, Biological crystallography.

[46]  Karen N. Allen,et al.  research papers Acta Crystallographica Section D Biological , 2003 .

[47]  P. Evans Biological Crystallography an Introduction to Data Reduction: Space-group Determination, Scaling and Intensity Statistics , 2022 .