Nonparametric estimation for time-varying transformation models with longitudinal data

Regression methods for longitudinal analyses have traditionally focused on conditional-mean-based models. In many situations, the relevant scientific questions could be better studied by modelling the conditional distributions of the outcome variables as a function of time and other covariates. In this paper, we propose a class of time-varying transformation models for modelling the cumulative distribution function of a response variable conditioning on a set of covariates, and develop a two-step smoothing method for estimating the time-varying parameters. Applications and finite sample properties of our models and smoothing estimators are demonstrated through a cohort study of childhood obesity and cardiovascular risk factors, and a simulation study. Theoretical properties are developed for the two-step local polynomial estimators. Our approach provides a useful statistical tool in longitudinal analysis when the conditional-mean-based methods are inappropriate.

[1]  Zhiliang Ying,et al.  On semiparametric transformation cure models , 2004 .

[2]  P. Diggle,et al.  Analysis of Longitudinal Data. , 1997 .

[3]  Li Ping Yang,et al.  Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data , 1998 .

[4]  Stanley R. Johnson,et al.  Varying Coefficient Models , 1984 .

[5]  Jianqing Fan,et al.  Two‐step estimation of functional linear models with applications to longitudinal data , 1999 .

[6]  Runze Li,et al.  Quadratic Inference Functions for Varying‐Coefficient Models with Longitudinal Data , 2006, Biometrics.

[7]  Jianhua Z. Huang,et al.  Varying‐coefficient models and basis function approximations for the analysis of repeated measurements , 2002 .

[8]  H. Müller,et al.  FUNCTIONAL RESPONSE MODELS , 2004 .

[9]  Ing Rj Ser Approximation Theorems of Mathematical Statistics , 1980 .

[10]  Zhiliang Ying,et al.  Predicting Survival Probabilities with Semiparametric Transformation Models , 1997 .

[11]  Jianqing Fan,et al.  Fast implementations of nonparametric curve estimators , 1993 .

[12]  P. Diggle,et al.  Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters. , 1994, Biometrics.

[13]  M A Waclawiw,et al.  Longitudinal correlates of change in blood pressure in adolescent girls. , 1998, Hypertension.

[14]  Jeffrey S. Racine,et al.  Cross-Validation and the Estimation of Conditional Probability Densities , 2004 .

[15]  Catherine A. Sugar,et al.  Principal component models for sparse functional data , 1999 .

[16]  R. Carroll,et al.  Profile‐kernel versus backfitting in the partially linear models for longitudinal/clustered data , 2004 .

[17]  Zhiliang Ying,et al.  Semiparametric and Nonparametric Regression Analysis of Longitudinal Data , 2001 .

[18]  J. Hart,et al.  Consistency of cross-validation when the data are curves , 1993 .

[19]  Wenbin Lu,et al.  Semiparametric transformation models for the case-cohort study , 2006 .

[20]  Z. Ying,et al.  Analysis of transformation models with censored data , 1995 .

[21]  Donglin Zeng,et al.  Efficient estimation of semiparametric transformation models for counting processes , 2006 .

[22]  Chin-Tsang Chiang,et al.  KERNEL SMOOTHING ON VARYING COEFFICIENT MODELS WITH LONGITUDINAL DEPENDENT VARIABLE , 2000 .

[23]  B. Silverman,et al.  Estimating the mean and covariance structure nonparametrically when the data are curves , 1991 .

[24]  R. Carroll,et al.  Nonparametric Function Estimation for Clustered Data When the Predictor is Measured without/with Error , 2000 .

[25]  Debra L Franko,et al.  Childhood overweight and cardiovascular disease risk factors: the National Heart, Lung, and Blood Institute Growth and Health Study. , 2007, The Journal of pediatrics.

[26]  Tapabrata Maiti,et al.  Analysis of Longitudinal Data (2nd ed.) (Book) , 2004 .

[27]  H. Muller,et al.  Inference for covariate adjusted regression via varying coefficient models , 2006, math/0607010.

[28]  H. Müller,et al.  Local Polynomial Modeling and Its Applications , 1998 .

[29]  Rodney C. Wolff,et al.  Methods for estimating a conditional distribution function , 1999 .

[30]  Ana Ivelisse Avilés,et al.  Linear Mixed Models for Longitudinal Data , 2001, Technometrics.

[31]  Geert Molenberghs,et al.  Using a Box–Cox transformation in the analysis of longitudinal data with incomplete responses , 2000 .

[32]  B. Rosner,et al.  The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents , 2004 .

[33]  J. Hart,et al.  Kernel Regression Estimation Using Repeated Measurements Data , 1986 .

[34]  Jianqing Fan,et al.  Fast Implementations of Nonparametric Curve Estimators , 1994 .

[35]  Peter Hall,et al.  Order-Preserving Nonparametric Regression, With Applications to Conditional Distribution and Quantile Function Estimation , 2003 .