On signatures of clouds in exoplanetary transit spectra

Transmission spectra of exoplanetary atmospheres have been used to infer the presence of clouds/hazes. Such inferences are typically based on spectral slopes in the optical deviant from gaseous Rayleigh scattering or low-amplitude spectral features in the infrared. We investigate three observable metrics that could allow constraints on cloud properties from transmission spectra, namely, the optical slope, the uniformity of this slope, and condensate features in the infrared. We derive these metrics using model transmission spectra considering Mie extinction from a wide range of condensate species, particle sizes, and scale heights. Firstly, we investigate possible degeneracies among the cloud properties for an observed slope. We find, for example, that spectra with very steep optical slopes suggest sulphide clouds (e.g. MnS, ZnS, Na$_2$S) in the atmospheres. Secondly, (non)uniformities in optical slopes provide additional constraints on cloud properties, e.g., MnS, ZnS, TiO$_2$, and Fe$_2$O$_3$ have significantly non-uniform slopes. Thirdly, infrared spectra provide an additional powerful probe into cloud properties, with SiO$_2$, Fe$_2$O$_3$, Mg$_2$SiO$_4$, and MgSiO$_3$ bearing strong infrared features observable with the James Webb Space Telescope. We investigate observed spectra of eight hot Jupiters and discuss their implications. In particular, no single or composite condensate species considered here conforms to the steep and non-uniform optical slope observed for HD 189733b. Our work highlights the importance of the three above metrics to investigate cloud properties in exoplanetary atmospheres using high-precision transmission spectra and detailed cloud models. We make our Mie scattering data for condensates publicly available to the community.

[1]  R. MacDonald,et al.  HD 209458b in new light: evidence of nitrogen chemistry, patchy clouds and sub-solar water , 2017, 1701.01113.

[2]  A. D. Etangs,et al.  Rayleigh scattering in the transit spectrum of HD 189733b , 2008, 0802.3228.

[3]  Andrew S. Ackerman,et al.  Precipitating Condensation Clouds in Substellar Atmospheres , 2001, astro-ph/0103423.

[4]  S. Seager,et al.  A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES , 2009, 0910.1347.

[5]  A. Burrows,et al.  THEORETICAL TRANSIT SPECTRA FOR GJ 1214b AND OTHER “SUPER-EARTHS” , 2012, 1203.1921.

[6]  N. Santos,et al.  Near-infrared transmission spectrum of the warm-uranus GJ 3470b with the Wide Field Camera-3 on the Hubble Space Telescope , 2014, 1405.1056.

[7]  M. Marley,et al.  QUANTITATIVELY ASSESSING THE ROLE OF CLOUDS IN THE TRANSMISSION SPECTRUM OF GJ 1214b , 2013, 1305.4124.

[8]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[9]  Michael R. Line,et al.  THE INFLUENCE OF NONUNIFORM CLOUD COVER ON TRANSIT TRANSMISSION SPECTRA , 2015, 1511.09443.

[10]  T. Encrenaz,et al.  Models of the ISO 3-μm Reflection Spectrum of Jupiter☆ , 1998 .

[11]  A. Colaprete,et al.  Water ice cloud formation on Mars is more difficult than presumed: Laboratory studies of ice nucleation on surrogate materials , 2010 .

[12]  Jacob L. Bean,et al.  HUBBLE SPACE TELESCOPE NEAR-IR TRANSMISSION SPECTROSCOPY OF THE SUPER-EARTH HD 97658B , 2014, 1403.4602.

[13]  Christoph Mordasini,et al.  THE IMPRINT OF EXOPLANET FORMATION HISTORY ON OBSERVABLE PRESENT-DAY SPECTRA OF HOT JUPITERS , 2016, 1609.03019.

[14]  A. Santerne,et al.  Impact of occultations of stellar active regions on transmission spectra: Can occultation of a plage mimic the signature of a blue sky? , 2014, 1407.2066.

[15]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[16]  A. Sánchez-Lavega,et al.  Clouds in planetary atmospheres: A useful application of the Clausius–Clapeyron equation , 2004 .

[17]  A. Burrows,et al.  Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres , 2006, astro-ph/0607211.

[18]  C. Moutou,et al.  Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05 μm transmission spectrum of HD 189733b with the Hubble Space Telescope , 2007, 0712.1374.

[19]  M. H. Koelink,et al.  Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations. , 1992, Applied optics.

[20]  Sara Seager,et al.  INFERENCE OF INHOMOGENEOUS CLOUDS IN AN EXOPLANET ATMOSPHERE , 2013, 1309.7894.

[21]  Sara Seager,et al.  A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b , 2014, 1410.2255.

[22]  Drake Deming,et al.  H2O ABUNDANCES IN THE ATMOSPHERES OF THREE HOT JUPITERS , 2014, 1407.6054.

[23]  I. Dobbs-Dixon,et al.  Dynamic mineral clouds on HD 189733b I. 3D RHD with kinetic, non-equilibrium cloud formation , 2016, 1603.09098.

[24]  M. Swain,et al.  An analytical formalism accounting for clouds and other `surfaces' for exoplanet transmission spectroscopy , 2016, 1610.02049.

[25]  N. Crouzet,et al.  WATER VAPOR IN THE SPECTRUM OF THE EXTRASOLAR PLANET HD 189733b. I. THE TRANSIT , 2014, 1407.2462.

[26]  I. Hubeny,et al.  A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets , 2003 .

[27]  D. Deirmendjian Electromagnetic scattering on spherical polydispersions , 1969 .

[28]  R. M. Atkinson Light Scattering by Irregularly Shaped Particles , 1980 .

[29]  D. Deirmendjian Scattering and Polarization Properties of Water Clouds and Hazes in the Visible and Infrared , 1964 .

[30]  Drake Deming,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2016, Nature.

[31]  K. Heng,et al.  CONSTRAINING THE ATMOSPHERIC COMPOSITION OF THE DAY–NIGHT TERMINATORS OF HD 189733b: ATMOSPHERIC RETRIEVAL WITH AEROSOLS , 2013, 1310.5868.

[32]  A. Burrows,et al.  Chemical Equilibrium Abundances in Brown Dwarf and Extrasolar Giant Planet Atmospheres , 1999 .

[33]  A. Burrows Spectra as windows into exoplanet atmospheres , 2013, Proceedings of the National Academy of Sciences.

[34]  L. Mundy,et al.  Multiwavelength analysis for interferometric (sub-)mm observations of protoplanetary disks - Radial constraints on the dust properties and the disk structure , 2015, 1512.05679.

[35]  G. Grams,et al.  Light Scattering by Irregular Randomly Oriented Particles , 1976, Science.

[36]  Roxana Lupu,et al.  FORWARD AND INVERSE MODELING OF THE EMISSION AND TRANSMISSION SPECTRUM OF GJ 436B: INVESTIGATING METAL ENRICHMENT, TIDAL HEATING, AND CLOUDS , 2016, 1610.07632.

[37]  S. Aigrain,et al.  The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations , 2012, 1210.4163.

[38]  J. Manners,et al.  The mineral clouds on HD 209458b and HD 189733b , 2016, 1603.04022.

[39]  Drake Deming,et al.  A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b , 2014, Nature.

[40]  Hannah R. Wakeford,et al.  Transmission spectral properties of clouds for hot Jupiter exoplanets , 2014, 1409.7594.

[41]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[42]  Sara Seager,et al.  ATMOSPHERIC RETRIEVAL FOR SUPER-EARTHS: UNIQUELY CONSTRAINING THE ATMOSPHERIC COMPOSITION WITH TRANSMISSION SPECTROSCOPY , 2012, 1203.4018.

[43]  B. Draine,et al.  On the Submillimeter Opacity of Protoplanetary Disks , 2005, astro-ph/0507292.

[44]  M. Marley,et al.  Clouds and Hazes in Exoplanet Atmospheres , 2013, 1301.5627.

[45]  T. Evans,et al.  DETECTION OF H2O AND EVIDENCE FOR TiO/VO IN AN ULTRA-HOT EXOPLANET ATMOSPHERE , 2016, 1604.02310.

[46]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[47]  Larry C. Andrews,et al.  Absorption and Scattering , 2004, Introduction to Optical Microscopy.

[48]  Kyle L. Luther,et al.  CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST , 2015, 1511.05528.

[49]  Power Series Expansion of the Mie Scattering Phase Function , 1983 .

[50]  A. Showman,et al.  3D mixing in hot Jupiters atmospheres. I. Application to the day/night cold trap in HD 209458b , 2013, 1301.4522.

[51]  Sara Seager,et al.  Constraining Exoplanet Mass from Transmission Spectroscopy , 2013, Science.

[52]  K. Heng A CLOUDINESS INDEX FOR TRANSITING EXOPLANETS BASED ON THE SODIUM AND POTASSIUM LINES: TENTATIVE EVIDENCE FOR HOTTER ATMOSPHERES BEING LESS CLOUDY AT VISIBLE WAVELENGTHS , 2016, 1606.07218.

[53]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[54]  Christoph Mordasini,et al.  A FRAMEWORK FOR CHARACTERIZING THE ATMOSPHERES OF LOW-MASS LOW-DENSITY TRANSITING PLANETS , 2013, 1306.4329.

[55]  Petr Chýlekt,et al.  Light scattering by small particles in an absorbing medium , 1977 .

[56]  Jonathan J. Fortney,et al.  The effect of condensates on the characterization of transiting planet atmospheres with transmission spectroscopy , 2005, astro-ph/0509292.

[57]  Nikku Madhusudhan,et al.  Exoplanetary Atmospheres—Chemistry, Formation Conditions, and Habitability , 2016, Space Science Reviews.

[58]  W. C. Bowman,et al.  A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b , 2010, Nature.

[59]  E. Kempton,et al.  CLOUDS IN SUPER-EARTH ATMOSPHERES: CHEMICAL EQUILIBRIUM CALCULATIONS , 2016, 1602.02759.

[60]  M. Marley,et al.  High-temperature condensate clouds in super-hot Jupiter atmospheres , 2016, 1610.03325.

[61]  M. Marley,et al.  CLOUD BASE SIGNATURE IN TRANSMISSION SPECTRA OF EXOPLANET ATMOSPHERES , 2014, 1406.4082.

[62]  R. Salmeron,et al.  Tables of phase functions, opacities, albedos, equilibrium temperatures, and radiative accelerations of dust grains in exoplanets , 2015, 1505.08013.

[63]  C. Helling Cloud formation in giant planets , 2007, 0711.3730.

[64]  Royal Observatory of Edinburgh,et al.  Consistent Simulations of Substellar Atmospheres and Nonequilibrium Dust Cloud Formation , 2008, 0801.3733.

[65]  Sara Seager,et al.  THE OPTICAL AND NEAR-INFRARED TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ 1214b: FURTHER EVIDENCE FOR A METAL-RICH ATMOSPHERE , 2011, 1109.0582.

[66]  Sara Seager,et al.  Exoplanet Atmospheres: Physical Processes , 2010 .